diff --git a/src/bin/gstlal_inspiral b/src/bin/gstlal_inspiral index d49339b07407558d0d38fd7bdc43a0a89fdfc007..f90d37d04698fecf84c3ed49461a7506d87e898b 100755 --- a/src/bin/gstlal_inspiral +++ b/src/bin/gstlal_inspiral @@ -10,7 +10,7 @@ # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General +# MERCHANTABLITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along @@ -57,7 +57,7 @@ from gstlal import pipeio from gstlal import pipeparts from gstlal import cbc_template_fir from gstlal import misc as gstlalmisc - +from gstlal import templates # # ============================================================================= @@ -152,6 +152,12 @@ def add_cbc_metadata(xmldoc, process, seg): return search_summary + + + + + + # # ============================================================================= # @@ -195,7 +201,7 @@ class Bank(object): self.filter_length = max(fragment.end for fragment in bank_fragments) self.snr_threshold = snr_threshold self.logname = logname - + sample_rate = max(bank_fragment.rate for bank_fragment in bank_fragments) template_bank, self.autocorrelation_bank = cbc_template_fir.generate_templates(lsctables.table.get_table(utils.load_filename(template_bank_filename, gz = (template_bank_filename or "stdin").endswith(".gz"), verbose = verbose), lsctables.SnglInspiralTable.tableName), psd, flow, sample_rate, self.filter_length, autocorrelation_length = autocorrelation_length, verbose = verbose) @@ -350,6 +356,7 @@ def mkLLOIDsrc(pipeline, instrument, detector, rates, psd = None, psd_fft_length 128: 1.03 / 0.93, 256: 1.03 / 0.93, 512: 1.03 / 0.93, + 1024: 1.03 / 1.03, 2048: 1.03 / 1.03 } @@ -804,12 +811,9 @@ banks = [ Bank( template_bank_filename, psd, - [ - Bank.BankFragment(2048, 0.0, 1.0), - Bank.BankFragment(512, 1.0, 5.0), - Bank.BankFragment(256, 5.0, 13.0), - Bank.BankFragment(128, 13.0, 29.0) - ], + [ Bank.BankFragment(rate,begin,end) + for rate,begin,end in + templates.time_frequency_boundaries(template_bank_filename,flow=options.flow)], gate_fap = options.ortho_gate_fap, snr_threshold = options.snr_threshold, tolerance = options.svd_tolerance, @@ -850,6 +854,7 @@ sngl_inspiral_table.sync_next_id() # + pipeline = gst.Pipeline("gstlal_inspiral") mainloop = gobject.MainLoop() @@ -881,7 +886,6 @@ handler = LLOIDHandler(mainloop, pipeline, verbose = options.verbose) # process requested segment # - pipeline.set_state(gst.STATE_PAUSED) pipeline.seek(1.0, gst.Format(gst.FORMAT_TIME), gst.SEEK_FLAG_FLUSH, gst.SEEK_TYPE_SET, options.seg[0].ns(), gst.SEEK_TYPE_SET, options.seg[1].ns()) pipeline.set_state(gst.STATE_PLAYING) @@ -893,6 +897,7 @@ mainloop.run() # + sngl_inspiral_table.sort(lambda a, b: cmp(a.end_time, b.end_time) or cmp(a.end_time_ns, b.end_time_ns) or cmp(a.ifo, b.ifo)) for row in sngl_inspiral_table: row.process_id = process.process_id diff --git a/src/python/templates.py b/src/python/templates.py index f83f72bb8f20913379159bef2cf7134ed6c6b453..f3b880b92f227ac28ce684d80f4a4d186638edd3 100644 --- a/src/python/templates.py +++ b/src/python/templates.py @@ -29,7 +29,9 @@ import numpy from pylal import datatypes as laltypes from pylal import lalfft - +from pylal import spawaveform +from glue.ligolw import lsctables +from glue.ligolw import utils __author__ = "Kipp Cannon <kipp.cannon@ligo.org>, Chad Hanna <chad.hanna@ligo.org>, Drew Keppel <drew.keppel@ligo.org>" __version__ = "FIXME" @@ -160,3 +162,111 @@ def normalized_autocorrelation(fseries, revplan): data = tseries.data tseries.data = data / data[0] return tseries + + +def time_frequency_boundaries( template_bank_filename, + segment_samples_max = 2048, + flow = 64, + sample_rate_max = 2048, + padding = 0.9 ): + """ + The function time_frequency_boundaries splits a template bank up by times + for which different sampling rates are appropriate. The function returns + a list of 3-tuples of the form (rate,begin,end) where rate is the sampling + rate and begin/end mark the boundaries during which the given rate is + guaranteed to be appropriate (no template exceeds a frequency of padding*Nyquist + during these times and no lower sampling rate would work). For computational + purposes, no time interval exceeds max_samples_per_segment. The same rate may + therefore apply to more than one segment. + """ + # Round a number up to the nearest power of 2 + def ceil_pow_2( number ): + return 2**(numpy.ceil(numpy.log2( number ))) + + # We only allow sample rates that are powers of two. + # + # h(t) is sampled at 16384Hz, which sets the upper limit + # and advligo will likely not reach below 10Hz, which + # sets the lower limit (32Hz = ceil_pow_2(2*10)Hz ) + # + allowed_rates = [32,64,128,256,512,1024,2048,4096,8192,16384] + + # Load template bank mass params + template_bank_table = ( + lsctables.table.get_table( + utils.load_filename( + template_bank_filename, + gz=template_bank_filename.endswith("gz") ), + "sngl_inspiral") ) + mass1 = template_bank_table.get_column('mass1') + mass2 = template_bank_table.get_column('mass2') + + # + # Adjust the allowed_rates to fit with the template bank + # + ffinal_max = max(spawaveform.ffinal(m1,m2,'schwarz_isco') for m1,m2 in zip(mass1,mass2) ) + ffinal_max = min(allowed_rates[-1],ffinal_max) + + # FIXME: output sample_rate_max may be bigger than input + sample_rate_max = min(ceil_pow_2( 2*(1./padding)* ffinal_max ),ceil_pow_2(sample_rate_max)) + sample_rate_min = ceil_pow_2( 2*(1./padding)* flow ) + + + allowed_rates = allowed_rates[allowed_rates.index(sample_rate_min):allowed_rates.index(sample_rate_max)] # excludes sample_rate_max + + # + # Split up templates by time + # + + # FIXME: what happens if padding*sample_rate_min/2 == flow? + longest_chirp = max(spawaveform.chirptime(m1,m2,7,flow,sample_rate_max/2) for m1,m2 in zip(mass1,mass2)) + time_partition = [ longest_chirp ] + for rate in allowed_rates: + longest_chirp = max(spawaveform.chirptime(m1,m2,7,padding*rate/2,sample_rate_max/2) for m1,m2 in zip(mass1,mass2)) + time_partition.append( longest_chirp ) + + time_partition.append(0) + allowed_rates.append(sample_rate_max) + + time_partition.reverse() + allowed_rates.reverse() + + # + # SVD needs more sample points than templates. + # Reject some sampling_rates if the templates don't + # spend enough time there + # e.g. + # allowed_rates = [64,128,256,512,1024,2048] + # time_partition = [100,25,10,4,1,0.01,0.001] + + + num_templates = len(mass1) + # FIXME: there are undoubtedly some dangerous corner cases here + if not 2*num_templates < segment_samples_max: + # FIXME this is bad + return (None,None,None) + + for rate,begin,end in zip(allowed_rates,time_partition[:-1],time_partition[1:]): + segment_samples = (end-begin)*rate + if segment_samples < 2*num_templates: + allowed_rates.remove(rate/2) #FIXME: danger at right edge of list + time_partition.remove(end) + + # Check that no time segment is excessively long. + # If it is, chop it up into the minimal number of + # equal-sized bits that satisfy the smallness + # requirement + for rate,begin,end in zip(allowed_rates,time_partition[:-1],time_partition[1:]): + segment_samples = (end-begin)*rate + if segment_samples > segment_samples_max: + num_segments = numpy.ceil(float(segment_samples)/segment_samples_max) + increment = float(end-begin)/num_segments + start_index = time_partition.index(begin) + index = 1 + while index < num_segments: + allowed_rates.insert(start_index,rate) + time_partition.insert(start_index+index,begin+index*increment) + index += 1 + + + return zip(allowed_rates,time_partition[:-1],time_partition[1:])