Maintenance will be performed on git.ligo.org, chat.ligo.org, containers.ligo.org, and docs.ligo.org on the morning of Tuesday 11th August 2020, starting at approximately 9am PDT. It is expected to take around 20 minutes and there will be a short period of downtime (less than five minutes) towards the end of the maintenance window. Please direct any comments, questions, or concerns to computing-help@ligo.org.

Commit b99d4eb3 authored by Ryan Michael Magee's avatar Ryan Michael Magee

gstlal_inspiral_create_prior_diststats: enabled multiple dtdphi pdf capabilities

parent 8b3134f7
......@@ -82,6 +82,7 @@ def parse_command_line():
parser.add_option("--df", metavar = "N", default = 40, help = "set the degrees of freedom for the background chisq prior: default 40. You can also use template bandwidth to set this by setting it to 'bandwidth'")
parser.add_option("--svd-file", metavar = "filename", help = "The SVD file to read the template ids from")
parser.add_option("--mass-model-file", metavar = "filename", help = "The mass model file to read from (hdf5 format)")
parser.add_option("--dtdphi-file", metavar = "filename", help = "dtdphi snr ratio pdfs to read from (hdf5 format). Default passed by gstlal_inspiral_pipe, but not when run as a standalone program.")
parser.add_option("--psd-xml", type = "string", help = "Specify a PSD to use for computing template bandwidth. Required if df is bandwidth")
options, filenames = parser.parse_args()
......@@ -122,7 +123,6 @@ def parse_command_line():
# NOTE the 4000 is tuned by looking at real data distributions
options.df = int(4000. / min(bandwidths))
print options.df
return options, process_params, filenames, template_ids, horizon_factors
......@@ -158,7 +158,7 @@ process = ligolw_process.register_to_xmldoc(xmldoc, u"gstlal_inspiral_create_pri
#
rankingstat = far.RankingStat(template_ids = template_ids, instruments = options.instrument, delta_t = options.coincidence_threshold, min_instruments = options.min_instruments, population_model_file = options.mass_model_file, horizon_factors = horizon_factors)
rankingstat = far.RankingStat(template_ids = template_ids, instruments = options.instrument, delta_t = options.coincidence_threshold, min_instruments = options.min_instruments, population_model_file = options.mass_model_file, dtdphi_file = options.dtdphi_file, horizon_factors = horizon_factors)
if options.background_prior > 0:
rankingstat.denominator.add_noise_model(number_of_events = options.background_prior, df = int(options.df))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment