lalinference_pipe_utils.py 139 KB
Newer Older
1

2
#flow DAG Class definitions for LALInference Pipeline
3
# (C) 2012 John Veitch, Vivien Raymond, Kiersten Ruisard, Kan Wang
4

John Douglas Veitch's avatar
John Douglas Veitch committed
5
import itertools
6
import glue
7 8 9
from glue import pipeline
from ligo import segments
from ligo.segments import utils as segmentsUtils
10 11
from glue.ligolw import ligolw, lsctables
from glue.ligolw import utils as ligolw_utils
12
import os
13
import socket
14 15
import uuid
import ast
16
import pdb
John Douglas Veitch's avatar
John Douglas Veitch committed
17
import string
18
from math import floor,ceil,log,pow
19
import sys
20
import random
21
from itertools import permutations
22
import shutil
23
import numpy as np
24
import math
25
from six.moves import range
26
from six import next
27
from functools import reduce
28 29 30 31 32

# We use the GLUE pipeline utilities to construct classes for each
# type of job. Each class has inputs and outputs, which are used to
# join together types of jobs into a DAG.

33 34 35 36 37
def findSegmentsToAnalyze(ifo, frametype, state_vector_channel, bits, gpsstart, gpsend):
    """Return list of segments whose data quality is good enough for PE. The data
    quality is examined with statevector in frame files. If frame files do not
    exist, return empty list.

38 39
    Parameters
    ----
40 41 42 43 44 45 46 47
    ifo: string
    frametype: string
    state_vector_channel: string
    bits: list of string
        List of bits. This function extracts the data taken when all of the
        bits in this list are "active" assuming such data is good enough for
        PE.
    gpsstart, gpsend: float
48 49 50
        GPS period to analyse
    """
    try:
51 52 53 54
        from glue.lal import Cache
        from gwdatafind import find_urls
        import gwpy
        from gwpy.timeseries import StateVector
55
    except ImportError:
56
        print('Unable to import necessary modules. Querying science segments not possible. Please try installing gwdatafind and gwpy')
57
        raise
58 59 60 61 62 63 64 65 66 67 68 69
    # search for frame file and read its statevector channel
    datacache = Cache.from_urls(find_urls(ifo[0], frametype, gpsstart, gpsend))
    if not datacache:
        return gwpy.segments.SegmentList([])
    flags = gwpy.timeseries.StateVector.read(
        datacache, state_vector_channel, start=gpsstart, end=gpsend
    ).to_dqflags()
    # extract segments all of whose bits are active
    segments = flags[bits[0]].active
    for bit in bits:
        segments -= ~flags[bit].active
    return segments
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def guess_url(fslocation):
    """
    Try to work out the web address of a given path
    """
    SERVER="localhost"
    USER=os.environ['USER']
    HOST=socket.getfqdn()
    if 'public_html' in fslocation:
        k='public_html/'
    elif 'WWW' in fslocation:
        k='WWW/'
    elif 'www_html' in fslocation:
        k='www_html/'
    else:
        k=None
    if k is not None:
        (a,b)=fslocation.split(k)
        webpath=os.path.join('~%s'%(USER),b)
        onweb=True
    else:
91
        (c,d)=fslocation.split(USER,1)
92 93 94 95
        for k in ['public_html','WWW','www_html']:
            trypath=c+os.environ['USER']+'/'+k+d
            #Follow symlinks
            if os.path.realpath(trypath)==os.path.normpath(fslocation):
96 97
                #(a,b)=trypath.split(k)
                webpath=os.path.join('~%s'%(USER),d)
98 99 100 101 102 103 104 105 106 107 108
                onweb=True
                break
            else:
                webpath=fslocation
                onweb=False
    if 'atlas' in HOST:
        url="https://atlas1.atlas.aei.uni-hannover.de/"
    elif 'ligo-wa' in HOST:
        url="https://ldas-jobs.ligo-wa.caltech.edu/"
    elif 'ligo-la' in HOST:
        url="https://ldas-jobs.ligo-la.caltech.edu/"
109 110
    elif 'cit' in HOST or 'caltech' in HOST:
        url="https://ldas-jobs.ligo.caltech.edu/"
111 112 113 114 115 116 117 118 119 120
    elif 'uwm' in HOST or 'nemo' in HOST:
        url="https://ldas-jobs.phys.uwm.edu/"
    elif 'phy.syr.edu' in HOST:
        url="https://sugar-jobs.phy.syr.edu/"
    elif 'arcca.cf.ac.uk' in HOST:
        url="https://geo2.arcca.cf.ac.uk/"
    elif 'vulcan' in HOST:
        url="https://galahad.aei.mpg.de/"
    else:
        if onweb:
121
            url="http://%s/"%(HOST)
122
        else:
123
            url=HOST+':'
124 125 126
    url=url+webpath
    return(url)

John Douglas Veitch's avatar
John Douglas Veitch committed
127
class Event():
128
    """
129
    Represents a unique event to run on
130
    """
131
    new_id=itertools.count()
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    def __init__(self,trig_time=None,SimInspiral=None,SimBurst=None,SnglInspiral=None,CoincInspiral=None,event_id=None,timeslide_dict=None,GID=None,ifos=None, duration=None,srate=None,trigSNR=None,fhigh=None,horizon_distance=None):
        self.trig_time=trig_time
        self.injection=SimInspiral
        self.burstinjection=SimBurst
        self.sngltrigger=SnglInspiral
        if timeslide_dict is None:
            self.timeslides={}
        else:
            self.timeslides=timeslide_dict
        self.GID=GID
        self.coinctrigger=CoincInspiral
        if ifos is None:
            self.ifos = []
        else:
            self.ifos = ifos
        self.duration = duration
        self.srate = srate
        self.trigSNR = trigSNR
        self.fhigh = fhigh
        self.horizon_distance = horizon_distance
        if event_id is not None:
            self.event_id=event_id
        else:
155
            self.event_id=next(Event.new_id)
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        if self.injection is not None:
            self.trig_time=self.injection.get_end()
            if event_id is None: self.event_id=int(str(self.injection.simulation_id).split(':')[2])
        if self.burstinjection is not None:
            self.trig_time=self.burstinjection.get_end()
            if event_id is None: self.event_id=int(str(self.burstinjection.simulation_id).split(':')[2])
        if self.sngltrigger is not None:
            self.trig_time=self.sngltrigger.get_end()
            self.event_id=int(str(self.sngltrigger.event_id).split(':')[2])
        if self.coinctrigger is not None:
            self.trig_time=self.coinctrigger.end_time + 1.0e-9 * self.coinctrigger.end_time_ns
        if self.GID is not None:
            self.event_id=int(''.join(i for i in self.GID if i.isdigit()))
        self.engine_opts={}
    def set_engine_option(self,opt,val):
        """
        Can set event-specific options for the engine nodes
        using this option, e.g. ev.set_engine_option('time-min','1083759273')
        """
        self.engine_opts[opt]=val
John Douglas Veitch's avatar
John Douglas Veitch committed
176 177

dummyCacheNames=['LALLIGO','LALVirgo','LALAdLIGO','LALAdVirgo']
John Douglas Veitch's avatar
John Douglas Veitch committed
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
def create_events_from_coinc_and_psd(
    coinc_xml_obj, psd_dict, gid=None, threshold_snr=None, flow=20.0, roq=False
):
    """This function calculates seglen, fhigh, srate and horizon distance from
    coinc.xml and psd.xml.gz from GraceDB and create list of Events as input of
    pipeline. This function is based on Chris Pankow's script.

    Parameters
    ----------
    coinc_xml_obj: glue.ligolw.ligolw.Document
        file object of coinc.xml
    psd_dict: dictionary of REAL8FrequencySeries
        PSDs of all the ifos
    threshold_snr: float
        snr threshold for detection
    flow: float
        lower frequecy cutoff for overlap calculation
    roq: bool
        Whether the run uses ROQ or not
198 199 200 201 202 203
    """
    output=[]
    from lal import series as lalseries
    import lal
    from lalsimulation import SimInspiralChirpTimeBound, GetApproximantFromString, IMRPhenomDGetPeakFreq
    from ligo.gracedb.rest import GraceDb, HTTPError
204
    try:
205 206 207
        from gstlal import reference_psd
    except ImportError:
        reference_psd = None
208 209
    coinc_events = lsctables.CoincInspiralTable.get_table(coinc_xml_obj)
    sngl_event_idx = dict((row.event_id, row) for row in lsctables.SnglInspiralTable.get_table(coinc_xml_obj))
210 211 212 213 214
    ifos = sorted(coinc_events[0].instruments)
    trigSNR = coinc_events[0].snr
    # Parse PSD
    srate_psdfile=16384
    fhigh=None
215 216 217 218 219 220
    if psd_dict is not None:
        psd = list(psd_dict.values())[0]
        srate_psdfile = pow(
            2.0, ceil(log(psd.f0 + psd.deltaF * (psd.data.length - 1), 2))
        ) * 2
    coinc_map = lsctables.CoincMapTable.get_table(coinc_xml_obj)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    for coinc in coinc_events:
        these_sngls = [sngl_event_idx[c.event_id] for c in coinc_map if c.coinc_event_id == coinc.coinc_event_id]
        dur=[]
        srate=[]
        horizon_distance=[]
        for e in these_sngls:
            if roq==False:
                chirplen = SimInspiralChirpTimeBound(flow, e.mass1 * lal.MSUN_SI, e.mass2 * lal.MSUN_SI, 0.0, 0.0)
                fstop = IMRPhenomDGetPeakFreq(e.mass1, e.mass2, 0.0, 0.0)
                dur.append(pow(2.0, ceil( log(max(8.0, chirplen + 2.0), 2) ) ) )
                srate.append(pow(2.0, ceil( log(fstop, 2) ) ) * 2)
            # determine horizon distance
            if threshold_snr is not None:
                if e.eff_distance is not None and not math.isnan(e.eff_distance):
                    if e.snr > threshold_snr:
                        horizon_distance.append(e.eff_distance * e.snr / threshold_snr)
                    else:
                        horizon_distance.append(2 * e.eff_distance)
                else:
240
                    if reference_psd is not None and psd_dict is not None:
241 242 243
                        if not roq==False:
                            fstop = IMRPhenomDGetPeakFreq(e.mass1, e.mass2, 0.0, 0.0)
                        HorizonDistanceObj = reference_psd.HorizonDistance(f_min = flow, f_max = fstop, delta_f = 1.0 / 32.0, m1 = e.mass1, m2 = e.mass2)
244
                        horizon_distance.append(HorizonDistanceObj(psd_dict[e.ifo], snr = threshold_snr)[0])
245 246 247 248 249
        if srate:
            if max(srate)<srate_psdfile:
                srate = max(srate)
            else:
                srate = srate_psdfile
250
                if psd_dict is not None:
251 252 253 254 255 256 257 258 259 260 261
                    fhigh = srate_psdfile/2.0 * 0.95 # Because of the drop-off near Nyquist of the PSD from gstlal
        else:
            srate = None
        if dur:
            duration = max(dur)
        else:
            duration = None
        horizon_distance = max(horizon_distance) if len(horizon_distance) > 0 else None
        ev=Event(CoincInspiral=coinc, GID=gid, ifos = ifos, duration = duration, srate = srate,
                 trigSNR = trigSNR, fhigh = fhigh, horizon_distance=horizon_distance)
        output.append(ev)
262

263 264
    print("Found %d coinc events in table." % len(coinc_events))
    return output
265

266 267 268 269 270
def open_pipedown_database(database_filename,tmp_space):
    """
    Open the connection to the pipedown database
    """
    if not os.access(database_filename,os.R_OK):
271
        raise Exception('Unable to open input file: %s'%(database_filename))
272
    from glue.ligolw import dbtables
273
    import sqlite3
274 275 276
    working_filename=dbtables.get_connection_filename(database_filename,tmp_path=tmp_space)
    connection = sqlite3.connect(working_filename)
    if tmp_space:
277
        dbtables.set_temp_store_directory(connection,tmp_space)
278
    #dbtables.DBTable_set_connection(connection)
279
    return (connection,working_filename)
280

281
def get_zerolag_lloid(database_connection, dumpfile=None, gpsstart=None, gpsend=None, max_cfar=-1, min_cfar=-1):
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    """
    Returns a list of Event objects
    from pipedown data base. Can dump some stats to dumpfile if given,
    and filter by gpsstart and gpsend to reduce the nunmber or specify
    max_cfar to select by combined FAR
    """
    output={}
    if gpsstart is not None: gpsstart=float(gpsstart)
    if gpsend is not None: gpsend=float(gpsend)
    # Get coincs
    get_coincs = "SELECT sngl_inspiral.end_time+sngl_inspiral.end_time_ns*1e-9,sngl_inspiral.ifo,coinc_event.coinc_event_id,sngl_inspiral.snr,sngl_inspiral.chisq,coinc_inspiral.combined_far \
            FROM sngl_inspiral join coinc_event_map on (coinc_event_map.table_name=='sngl_inspiral' and coinc_event_map.event_id ==\
            sngl_inspiral.event_id) join coinc_event on (coinc_event.coinc_event_id==coinc_event_map.coinc_event_id) \
            join coinc_inspiral on (coinc_event.coinc_event_id==coinc_inspiral.coinc_event_id) \
    WHERE coinc_event.time_slide_id=='time_slide:time_slide_id:1'\
            "
    if gpsstart is not None:
        get_coincs=get_coincs+' and coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1.0e-9 > %f'%(gpsstart)
    if gpsend is not None:
        get_coincs=get_coincs+' and coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1.0e-9 < %f'%(gpsend)
    if max_cfar !=-1:
        get_coincs=get_coincs+' and coinc_inspiral.combined_far < %f'%(max_cfar)
    if min_cfar != -1:
        get_coincs=get_coincs+' and coinc_inspiral.combined_far > %f'%(min_cfar)
    db_out=database_connection.cursor().execute(get_coincs)
    extra={}
    for (sngl_time, ifo, coinc_id, snr, chisq, cfar) in db_out:
        coinc_id=int(coinc_id.split(":")[-1])
        if not coinc_id in output.keys():
            output[coinc_id]=Event(trig_time=sngl_time,timeslide_dict={},event_id=int(coinc_id))
            extra[coinc_id]={}
        output[coinc_id].timeslides[ifo]=0
        output[coinc_id].ifos.append(ifo)
        extra[coinc_id][ifo]={'snr':snr,'chisq':chisq,'cfar':cfar}
    if dumpfile is not None:
        fh=open(dumpfile,'w')
        for co in output.keys():
            for ifo in output[co].ifos:
                fh.write('%s %s %s %s %s %s %s\n'%(str(co),ifo,str(output[co].trig_time),str(output[co].timeslides[ifo]),str(extra[co][ifo]['snr']),str(extra[co][ifo]['chisq']),str(extra[co][ifo]['cfar'])))
        fh.close()
    return output.values()
323

324
def get_zerolag_pipedown(database_connection, dumpfile=None, gpsstart=None, gpsend=None, max_cfar=-1, min_cfar=-1):
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    """
    Returns a list of Event objects
    from pipedown data base. Can dump some stats to dumpfile if given,
    and filter by gpsstart and gpsend to reduce the nunmber or specify
    max_cfar to select by combined FAR
    """
    output={}
    if gpsstart is not None: gpsstart=float(gpsstart)
    if gpsend is not None: gpsend=float(gpsend)
    # Get coincs
    get_coincs = "SELECT sngl_inspiral.end_time+sngl_inspiral.end_time_ns*1e-9,sngl_inspiral.ifo,coinc_event.coinc_event_id,sngl_inspiral.snr,sngl_inspiral.chisq,coinc_inspiral.combined_far \
            FROM sngl_inspiral join coinc_event_map on (coinc_event_map.table_name=='sngl_inspiral' and coinc_event_map.event_id ==\
            sngl_inspiral.event_id) join coinc_event on (coinc_event.coinc_event_id==coinc_event_map.coinc_event_id) \
            join coinc_inspiral on (coinc_event.coinc_event_id==coinc_inspiral.coinc_event_id) \
            WHERE coinc_event.time_slide_id=='time_slide:time_slide_id:10049'\
            "
    if gpsstart is not None:
        get_coincs=get_coincs+' and coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1.0e-9 > %f'%(gpsstart)
    if gpsend is not None:
        get_coincs=get_coincs+' and coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1.0e-9 < %f'%(gpsend)
    if max_cfar !=-1:
        get_coincs=get_coincs+' and coinc_inspiral.combined_far < %f'%(max_cfar)
    if min_cfar != -1:
        get_coincs=get_coincs+' and coinc_inspiral.combined_far > %f'%(min_cfar)
    db_out=database_connection.cursor().execute(get_coincs)
    extra={}
    for (sngl_time, ifo, coinc_id, snr, chisq, cfar) in db_out:
        coinc_id=int(coinc_id.split(":")[-1])
        if not coinc_id in output.keys():
            output[coinc_id]=Event(trig_time=sngl_time,timeslide_dict={},event_id=int(coinc_id))
            extra[coinc_id]={}
        output[coinc_id].timeslides[ifo]=0
        output[coinc_id].ifos.append(ifo)
        extra[coinc_id][ifo]={'snr':snr,'chisq':chisq,'cfar':cfar}
    if dumpfile is not None:
        fh=open(dumpfile,'w')
        for co in output.keys():
            for ifo in output[co].ifos:
                fh.write('%s %s %s %s %s %s %s\n'%(str(co),ifo,str(output[co].trig_time),str(output[co].timeslides[ifo]),str(extra[co][ifo]['snr']),str(extra[co][ifo]['chisq']),str(extra[co][ifo]['cfar'])))
        fh.close()
    return output.values()
366

367
def get_timeslides_pipedown(database_connection, dumpfile=None, gpsstart=None, gpsend=None, max_cfar=-1):
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    """
    Returns a list of Event objects
    with times and timeslide offsets
    """
    output={}
    if gpsstart is not None: gpsstart=float(gpsstart)
    if gpsend is not None: gpsend=float(gpsend)
    db_segments=[]
    sql_seg_query="SELECT search_summary.out_start_time, search_summary.out_end_time from search_summary join process on process.process_id==search_summary.process_id where process.program=='thinca'"
    db_out = database_connection.cursor().execute(sql_seg_query)
    for d in db_out:
        if d not in db_segments:
            db_segments.append(d)
    seglist=segments.segmentlist([segments.segment(d[0],d[1]) for d in db_segments])
    db_out_saved=[]
    # Get coincidences
    get_coincs="SELECT sngl_inspiral.end_time+sngl_inspiral.end_time_ns*1e-9,time_slide.offset,sngl_inspiral.ifo,coinc_event.coinc_event_id,sngl_inspiral.snr,sngl_inspiral.chisq,coinc_inspiral.combined_far \
                FROM sngl_inspiral join coinc_event_map on (coinc_event_map.table_name == 'sngl_inspiral' and coinc_event_map.event_id \
                == sngl_inspiral.event_id) join coinc_event on (coinc_event.coinc_event_id==coinc_event_map.coinc_event_id) join time_slide\
                on (time_slide.time_slide_id == coinc_event.time_slide_id and time_slide.instrument==sngl_inspiral.ifo)\
                join coinc_inspiral on (coinc_inspiral.coinc_event_id==coinc_event.coinc_event_id) where coinc_event.time_slide_id!='time_slide:time_slide_id:10049'"
    joinstr = ' and '
    if gpsstart is not None:
        get_coincs=get_coincs+ joinstr + ' coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1e-9 > %f'%(gpsstart)
    if gpsend is not None:
        get_coincs=get_coincs+ joinstr+' coinc_inspiral.end_time+coinc_inspiral.end_time_ns*1e-9 <%f'%(gpsend)
    if max_cfar!=-1:
        get_coincs=get_coincs+joinstr+' coinc_inspiral.combined_far < %f'%(max_cfar)
    db_out=database_connection.cursor().execute(get_coincs)
    # Timeslide functionality requires obsolete pylal - will be removed
    import pylal
    from pylal import SnglInspiralUtils
    extra={}
    for (sngl_time, slide, ifo, coinc_id, snr, chisq, cfar) in db_out:
        coinc_id=int(coinc_id.split(":")[-1])
403
        seg=list(filter(lambda seg:sngl_time in seg,seglist))[0]
404 405 406 407 408 409 410 411 412 413 414 415 416 417
        slid_time = SnglInspiralUtils.slideTimeOnRing(sngl_time,slide,seg)
        if not coinc_id in output.keys():
            output[coinc_id]=Event(trig_time=slid_time,timeslide_dict={},event_id=int(coinc_id))
            extra[coinc_id]={}
        output[coinc_id].timeslides[ifo]=slid_time-sngl_time
        output[coinc_id].ifos.append(ifo)
        extra[coinc_id][ifo]={'snr':snr,'chisq':chisq,'cfar':cfar}
    if dumpfile is not None:
        fh=open(dumpfile,'w')
        for co in output.keys():
            for ifo in output[co].ifos:
                fh.write('%s %s %s %s %s %s %s\n'%(str(co),ifo,str(output[co].trig_time),str(output[co].timeslides[ifo]),str(extra[co][ifo]['snr']),str(extra[co][ifo]['chisq']),str(extra[co][ifo]['cfar'])))
        fh.close()
    return output.values()
418

419
def mkdirs(path):
420 421 422 423 424 425
    """
    Helper function. Make the given directory, creating intermediate
    dirs if necessary, and don't complain about it already existing.
    """
    if os.access(path,os.W_OK) and os.path.isdir(path): return
    else: os.makedirs(path)
426

John Douglas Veitch's avatar
John Douglas Veitch committed
427
def chooseEngineNode(name):
428 429 430 431 432 433 434 435 436 437 438
    if name=='lalinferencenest':
        return LALInferenceNestNode
    if name=='lalinferenceburst':
        return LALInferenceBurstNode
    if name=='lalinferencemcmc':
        return LALInferenceMCMCNode
    if name=='lalinferencedatadump':
        return LALInferenceDataDumpNode
    if name=='bayeswavepsd':
        return BayesWavePSDNode
    return EngineNode
John Douglas Veitch's avatar
John Douglas Veitch committed
439

440 441 442
def get_engine_name(cp):
    name=cp.get('analysis','engine')
    if name=='random':
443
        engine_list=['lalinferencenest','lalinferencemcmc']
444 445 446 447 448 449 450 451 452
        if cp.has_option('input','gid'):
            gid=cp.get('input','gid')
            engine_number=int(''.join(i for i in gid if i.isdigit())) % 2
        else:
            engine_number=random.randint(0,1)
        return engine_list[engine_number]
    else:
        return name

453
def scan_timefile(timefile):
454 455 456 457 458
    import re
    p=re.compile('[\d.]+')
    times=[]
    timefilehandle=open(timefile,'r')
    for time in timefilehandle:
459 460 461 462 463 464 465
        if not p.match(time):
            continue
        if float(time) in times:
            print('Skipping duplicate time %s'%(time))
            continue
        print('Read time %s'%(time))
        times.append(float(time))
466 467
    timefilehandle.close()
    return times
468

469
def get_xml_psds(psdxml,ifos,outpath,end_time=None):
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    """
    Get a psd.xml.gz file and:
    1) Reads it
    2) Checks the psd file contains all the IFO we want to analyze
    3) Writes down the PSDs into an ascii file for each IFO in psd.xml.gz. The name of the file contains the trigtime (if given) and the IFO name.
    Input:
      psdxml: psd.xml.gz file
      ifos: list of ifos used for the analysis
      outpath: path where the ascii PSD will be written to
      (end_time): trigtime for this event. Will be used a part of the PSD file name
    """
    try:
        from lal import series as lalseries
    except ImportError:
        print("ERROR, cannot import lal.series in bppu/get_xml_psds()\n")
        raise

    out={}
    if not os.path.isdir(outpath):
        os.makedirs(outpath)
    if end_time is not None:
        time=repr(float(end_time))
492
    else:
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
        time=''
    #check we don't already have ALL the psd files #
    got_all=1
    for ifo in ifos:
        path_to_ascii_psd=os.path.join(outpath,ifo+'_psd_'+time+'.txt')
        # Check we don't already have that ascii (e.g. because we are running parallel runs of the save event
        if os.path.isfile(path_to_ascii_psd):
            got_all*=1
        else:
            got_all*=0
    if got_all==1:
        #print "Already have PSD files. Nothing to do...\n"
        for ifo in ifos:
            out[ifo]=os.path.join(outpath,ifo+'_psd_'+time+'.txt')
        return out

    # We need to convert the PSD for one or more IFOS. Open the file
    if not os.path.isfile(psdxml):
        print("ERROR: impossible to open the psd file %s. Exiting...\n"%psdxml)
        sys.exit(1)
    xmlpsd =  lalseries.read_psd_xmldoc(ligolw_utils.load_filename(psdxml,contenthandler = lalseries.PSDContentHandler))
    # Check the psd file contains all the IFOs we want to analize
515
    for ifo in ifos:
516
        if not ifo in xmlpsd:
517 518 519 520 521
            print("ERROR. The PSD for the ifo %s does not seem to be contained in %s\n"%(ifo,psdxml))
            sys.exit(1)
    #loop over ifos in psd xml file
    for instrument in xmlpsd.keys():
        #name of the ascii file we are going to write the PSD into
522
        path_to_ascii_psd=os.path.join(outpath,instrument+'_psd_'+time+'.txt')
523 524 525 526 527 528 529 530
        # Check we don't already have that ascii (e.g. because we are running parallel runs of the save event
        if os.path.isfile(path_to_ascii_psd):
            continue
        # get data for the IFO
        ifodata=xmlpsd[instrument]
        #check data is not empty
        if ifodata is None:
            continue
531 532
        # write down PSD into an ascii file
        combine = np.c_[ifodata.f0 + np.arange(ifodata.data.length) * ifodata.deltaF, ifodata.data.data]
533 534
        np.savetxt(path_to_ascii_psd,combine)
        # set node.psds dictionary with the path to the ascii files
535
        ifo=instrument
536
        out[ifo]=os.path.join(outpath,ifo+'_psd_'+time+'.txt')
537
    return out
538

539 540 541 542
def get_trigger_chirpmass(coinc_xml_obj):
    coinc_events = lsctables.CoincInspiralTable.get_table(coinc_xml_obj)
    sngl_event_idx = dict((row.event_id, row) for row in lsctables.SnglInspiralTable.get_table(coinc_xml_obj))
    coinc_map = lsctables.CoincMapTable.get_table(coinc_xml_obj)
543 544 545 546 547 548 549 550 551 552 553 554 555 556
    mass1 = []
    mass2 = []
    for coinc in coinc_events:
        these_sngls = [sngl_event_idx[c.event_id] for c in coinc_map if c.coinc_event_id == coinc.coinc_event_id]
        for e in these_sngls:
            mass1.append(e.mass1)
            mass2.append(e.mass2)
    # check that trigger masses are identical in each IFO
    assert len(set(mass1)) == 1
    assert len(set(mass2)) == 1

    mchirp = (mass1[0]*mass2[0])**(3./5.) / ( (mass1[0] + mass2[0])**(1./5.) )

    return mchirp
557

558
def get_roq_mchirp_priors(path, roq_paths, roq_params, key, coinc_xml_obj=None, sim_inspiral=None):
559

560 561 562 563
    ## XML and GID cannot be given at the same time
    ## sim_inspiral must already point at the right row
    mc_priors = {}

564 565
    if coinc_xml_obj is not None and sim_inspiral is not None:
        print("Error in get_roq_mchirp_priors, cannot use both coinc.xml and sim_inspiral\n")
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        sys.exit(1)

    for roq in roq_paths:
        params=os.path.join(path,roq,'params.dat')
        roq_params[roq]=np.genfromtxt(params,names=True)
        mc_priors[roq]=[float(roq_params[roq]['chirpmassmin']),float(roq_params[roq]['chirpmassmax'])]
    ordered_roq_paths=[item[0] for item in sorted(roq_params.items(), key=key)][::-1]
    # below is to construct non-overlapping mc priors for multiple roq mass-bin runs
    '''i=0
    for roq in ordered_roq_paths:
      if i>0:
        # change min, just set to the max of the previous one since we have already aligned it in the previous iteration of this loop
        #mc_priors[roq][0]+= (mc_priors[roq_lengths[i-1]][1]-mc_priors[roq][0])/2.
        mc_priors[roq][0]=mc_priors[ordered_roq_paths[i-1]][1]
      if i<len(roq_paths)-1:
        mc_priors[roq][1]-= (mc_priors[roq][1]- mc_priors[ordered_roq_paths[i+1]][0])/2.
      i+=1'''
583 584
    if coinc_xml_obj is not None:
        trigger_mchirp = get_trigger_chirpmass(coinc_xml_obj)
585
    elif sim_inspiral is not None:
586
        trigger_mchirp = sim_inspiral.mchirp
587 588
    else:
        trigger_mchirp = None
589

590
    return mc_priors, trigger_mchirp
591

592
def get_roq_component_mass_priors(path, roq_paths, roq_params, key, coinc_xml_obj=None, sim_inspiral=None):
Vivien Raymond's avatar
Vivien Raymond committed
593

594
    ## coinc_xml_obj and sim_inspiral cannot be given at the same time
595 596 597
    ## sim_inspiral must already point at the right row
    m1_priors = {}
    m2_priors = {}
Vivien Raymond's avatar
Vivien Raymond committed
598

599 600
    if coinc_xml_obj is not None and sim_inspiral is not None:
        print("Error in get_roq_mchirp_priors, cannot use both coinc.xml and sim_inspiral\n")
601
        sys.exit(1)
Vivien Raymond's avatar
Vivien Raymond committed
602

603 604 605 606 607
    for roq in roq_paths:
        params=os.path.join(path,roq,'params.dat')
        roq_params[roq]=np.genfromtxt(params,names=True)
        m1_priors[roq]=[float(roq_params[roq]['mass1min']),float(roq_params[roq]['mass1max'])]
        m2_priors[roq]=[float(roq_params[roq]['mass2min']),float(roq_params[roq]['mass2max'])]
Vivien Raymond's avatar
Vivien Raymond committed
608

609 610
    if coinc_xml_obj is not None:
        trigger_mchirp = get_trigger_chirpmass(coinc_xml_obj)
611 612 613 614
    elif sim_inspiral is not None:
        trigger_mchirp = sim_inspiral.mchirp
    else:
        trigger_mchirp = None
Vivien Raymond's avatar
Vivien Raymond committed
615

616
    return m1_priors, m2_priors, trigger_mchirp
Vivien Raymond's avatar
Vivien Raymond committed
617

618
def get_roq_mass_freq_scale_factor(mc_priors, trigger_mchirp, force_flow=None):
619 620 621 622
    mc_priors_keys_list = list(mc_priors.keys())
    mc_priors_keys_int = [int(seglen[:-1]) for seglen in mc_priors_keys_list]
    roq_min = mc_priors_keys_list[np.argmin(mc_priors_keys_int)]
    roq_max = mc_priors_keys_list[np.argmax(mc_priors_keys_int)]
623 624 625 626 627 628 629 630 631 632 633
    mc_max = mc_priors[roq_min][1]
    mc_min = mc_priors[roq_max][0]
    scale_factor = 1.
    if force_flow == None and trigger_mchirp != None:
        if trigger_mchirp >= mc_max:
            scale_factor = 2.**(floor(trigger_mchirp/mc_max))
        if trigger_mchirp <= mc_min:
            scale_factor = (2./3.2)**(ceil(trigger_mchirp/mc_min))
    elif force_flow != None:
        scale_factor = 20./force_flow
    return scale_factor
634

635 636
def create_pfn_tuple(filename,protocol='file://',site='local'):
    return( (os.path.basename(filename),protocol+os.path.abspath(filename),site) )
637

Vivien Raymond's avatar
Vivien Raymond committed
638
def mchirp_from_components(m1, m2):
639
    return (m1*m2)**(3.0/5.0) / (m1+m2)**(1.0/5.0)
Vivien Raymond's avatar
Vivien Raymond committed
640 641

def Query_ROQ_Bounds_Type(path, roq_paths):
642 643 644 645 646 647 648 649 650 651 652 653
    # Assume that parametrization of ROQ bounds is independent of seglen; just look at first one
    import numpy as np
    roq = roq_paths[0]
    params = os.path.join(path,roq,'params.dat')
    roq_params0 = np.genfromtxt(params,names=True)
    roq_names_set = set(roq_params0.dtype.names)
    component_mass_bounds_set = set(['mass1min', 'mass1max', 'mass2min', 'mass2max'])
    chirp_mass_q_bounds_set = set(['chirpmassmin', 'chirpmassmax', 'qmin', 'qmax'])
    if roq_names_set.issuperset(component_mass_bounds_set):
        roq_bounds = 'component_mass'
    elif roq_names_set.issuperset(chirp_mass_q_bounds_set):
        roq_bounds = 'chirp_mass_q'
654
    else:
655 656 657
        print('Invalid bounds for ROQ. Ether (m1,m2) or (mc,q) bounds are supported.')
        sys.exit(1)
    return roq_bounds
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
class LALInferencePipelineDAG(pipeline.CondorDAG):
    def __init__(self,cp,dax=False,site='local'):
        self.subfiles=[]
        self.config=cp
        self.engine=get_engine_name(cp)
        self.EngineNode=chooseEngineNode(self.engine)
        self.site=site
        if cp.has_option('paths','basedir'):
            self.basepath=cp.get('paths','basedir')
        else:
            self.basepath=os.getcwd()
            print('No basepath specified, using current directory: %s'%(self.basepath))
        mkdirs(self.basepath)
        print("Generating LALInference DAG in {0}".format(self.basepath))
        if dax:
            os.chdir(self.basepath)
        self.posteriorpath=os.path.join(self.basepath,'posterior_samples')
        mkdirs(self.posteriorpath)
        daglogdir=cp.get('paths','daglogdir')
        mkdirs(daglogdir)
        self.daglogfile=os.path.join(daglogdir,'lalinference_pipeline-'+str(uuid.uuid1())+'.log')
        super(LALInferencePipelineDAG,self).__init__(self.daglogfile,dax=dax)
        if cp.has_option('paths','cachedir'):
            self.cachepath=cp.get('paths','cachedir')
        else:
            self.cachepath=os.path.join(self.basepath,'caches')
        mkdirs(self.cachepath)
        if cp.has_option('paths','logdir'):
            self.logpath=cp.get('paths','logdir')
        else:
            self.logpath=os.path.join(self.basepath,'log')
        mkdirs(self.logpath)
        if cp.has_option('analysis','ifos'):
            self.ifos=ast.literal_eval(cp.get('analysis','ifos'))
        else:
            self.ifos=['H1','L1','V1']
        self.segments={}
        if cp.has_option('datafind','veto-categories'):
            self.veto_categories=cp.get('datafind','veto-categories')
        else: self.veto_categories=[]
        for ifo in self.ifos:
            self.segments[ifo]=[]
        self.computeroqweightsnode={}
        self.bayeslinenode={}
        self.bayeswavepsdnode={}
        self.dq={}
        self.frtypes=ast.literal_eval(cp.get('datafind','types'))
        self.channels=ast.literal_eval(cp.get('data','channels'))
        self.use_available_data=False
        self.webdir=cp.get('paths','webdir')
        if cp.has_option('analysis','dataseed'):
            self.dataseed=cp.getint('analysis','dataseed')
        else:
            self.dataseed=None
        # Set up necessary job files.
        self.prenodes={}
        self.datafind_job = pipeline.LSCDataFindJob(self.cachepath,self.logpath,self.config,dax=self.is_dax())
        self.datafind_job.add_opt('url-type','file')
        # If running on OSG use its datafind server
        if cp.has_option('analysis','osg') and cp.getboolean('analysis','osg'):
            self.datafind_job.add_opt('server','datafind.ligo.org')
        if cp.has_option('condor','accounting_group'):
            self.datafind_job.add_condor_cmd('accounting_group',cp.get('condor','accounting_group'))
        if cp.has_option('condor','accounting_group_user'):
            self.datafind_job.add_condor_cmd('accounting_group_user',cp.get('condor','accounting_group_user'))
        self.datafind_job.set_sub_file(os.path.abspath(os.path.join(self.basepath,'datafind.sub')))
        self.preengine_job = EngineJob(self.config, os.path.join(self.basepath,'prelalinference.sub'),self.logpath,engine='lalinferencedatadump',ispreengine=True,dax=self.is_dax())
        self.preengine_job.set_grid_site('local')
        self.preengine_job.set_universe('vanilla')
        if self.config.getboolean('analysis','roq'):
            self.computeroqweights_job = ROMJob(self.config,os.path.join(self.basepath,'computeroqweights.sub'),self.logpath,dax=self.is_dax())
            self.computeroqweights_job.set_grid_site('local')
        if self.config.has_option('condor','bayesline'):
            self.bayesline_job = BayesLineJob(self.config,os.path.join(self.basepath,'bayesline.sub'),self.logpath,dax=self.is_dax())
            self.bayesline_job.set_grid_site('local')
        self.bayeswavepsd_job={}
735
        if self.config.has_option('condor','bayeswave'):
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
            for ifo in self.ifos:
                self.bayeswavepsd_job[ifo] = BayesWavePSDJob(self.config,os.path.join(self.basepath,'bayeswavepsd_%s.sub'%(ifo)),self.logpath,dax=self.is_dax())
                self.bayeswavepsd_job[ifo].set_grid_site('local')
        # Need to create a job file for each IFO combination
        self.engine_jobs={}
        ifocombos=[]
        for N in range(1,len(self.ifos)+1):
            for a in permutations(self.ifos,N):
                ifocombos.append(a)
        for ifos in ifocombos:
            self.engine_jobs[ifos] = EngineJob(self.config, os.path.join(self.basepath,'engine_%s.sub'%(reduce(lambda x,y:x+y, map(str,ifos)))),self.logpath,engine=self.engine,dax=self.is_dax(), site=site)
        self.results_page_job = ResultsPageJob(self.config,os.path.join(self.basepath,'resultspage.sub'),self.logpath,dax=self.is_dax())
        self.results_page_job.set_grid_site('local')
        self.cotest_results_page_job = ResultsPageJob(self.config,os.path.join(self.basepath,'resultspagecoherent.sub'),self.logpath,dax=self.is_dax())
        self.cotest_results_page_job.set_grid_site('local')
        if self.engine=='lalinferencemcmc':
            self.combine_job = CombineMCMCJob(self.config,os.path.join(self.basepath,'combine_files.sub'),self.logpath,dax=self.is_dax())
            self.combine_job.set_grid_site('local')
            self.merge_job = MergeJob(self.config,os.path.join(self.basepath,'merge_runs.sub'),self.logpath,dax=self.is_dax(),engine='mcmc')
            self.merge_job.set_grid_site('local')
756
        else:
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
            self.merge_job = MergeJob(self.config,os.path.join(self.basepath,'merge_runs.sub'),self.logpath,dax=self.is_dax(),engine='nest')
            self.merge_job.set_grid_site('local')
        self.coherence_test_job = CoherenceTestJob(self.config,os.path.join(self.basepath,'coherence_test.sub'),self.logpath,dax=self.is_dax())
        self.coherence_test_job.set_grid_site('local')
        self.gracedbjob = GraceDBJob(self.config,os.path.join(self.basepath,'gracedb.sub'),self.logpath,dax=self.is_dax())
        self.gracedbjob.set_grid_site('local')
        self.mapjob = SkyMapJob(cp, os.path.join(self.basepath,'skymap.sub'), self.logpath)
        self.plotmapjob = PlotSkyMapJob(cp, os.path.join(self.basepath,'plotskymap.sub'),self.logpath)
        # Process the input to build list of analyses to do
        self.events=self.setup_from_inputs()

        # Sanity checking
        if len(self.events)==0:
            print('No input events found, please check your config if you expect some events')
        self.times=[e.trig_time for e in self.events]

        # Set up the segments
        if not (self.config.has_option('input','gps-start-time') and self.config.has_option('input','gps-end-time')) and len(self.times)>0:
            (mintime,maxtime)=self.get_required_data(self.times)
            if not self.config.has_option('input','gps-start-time'):
                self.config.set('input','gps-start-time',str(int(floor(mintime))))
            if not self.config.has_option('input','gps-end-time'):
                self.config.set('input','gps-end-time',str(int(ceil(maxtime))))
        self.add_science_segments()

        # Save the final configuration that is being used
        # first to the run dir
        conffilename=os.path.join(self.basepath,'config.ini')
785
        with open(conffilename,'w') as conffile:
786 787 788
            self.config.write(conffile)
        if self.config.has_option('paths','webdir'):
            mkdirs(self.config.get('paths','webdir'))
789
            with open(os.path.join(self.config.get('paths','webdir'),'config.ini'),'w') as conffile:
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
                self.config.write(conffile)

        # Generate the DAG according to the config given
        for event in self.events: self.add_full_analysis(event)
        if self.config.has_option('analysis','upload-to-gracedb'):
            if self.config.getboolean('analysis','upload-to-gracedb'):
                self.add_gracedb_FITSskymap_upload(self.events[0],engine=self.engine)
        self.dagfilename="lalinference_%s-%s"%(self.config.get('input','gps-start-time'),self.config.get('input','gps-end-time'))
        self.set_dag_file(os.path.join(self.basepath,self.dagfilename))
        if self.is_dax():
            self.set_dax_file(self.dagfilename)

    def add_full_analysis(self,event):
        if self.engine=='lalinferencenest' or  self.engine=='lalinferenceburst':
            result=self.add_full_analysis_lalinferencenest(event)
        elif self.engine=='lalinferencemcmc':
            result=self.add_full_analysis_lalinferencemcmc(event)
        else:
            raise Exception('Unknown engine {0}'.format(self.engine))
        return result
810

811 812 813 814
    def create_frame_pfn_file(self):
        """
        Create a pegasus cache file name, uses inspiralutils
        """
815
        from lalapps import inspiralutils as iu
816 817 818 819
        gpsstart=self.config.get('input','gps-start-time')
        gpsend=self.config.get('input','gps-end-time')
        pfnfile=iu.create_frame_pfn_file(self.frtypes,gpsstart,gpsend)
        return pfnfile
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
    def get_required_data(self,times):
        """
        Calculate the data that will be needed to process all events
        """
        #psdlength = self.config.getint('input','max-psd-length')
        padding=self.config.getint('input','padding')
        if self.config.has_option('engine','seglen') or self.config.has_option('lalinference','seglen'):
            if self.config.has_option('engine','seglen'):
                seglen = int(np.ceil(self.config.getfloat('engine','seglen')))
            if self.config.has_option('lalinference','seglen'):
                seglen = self.config.getint('lalinference','seglen')

            if os.path.isfile(os.path.join(self.basepath,'psd.xml.gz')) or self.config.has_option('condor','bayesline') or self.config.has_option('condor','bayeswave'):
                psdlength = 0
                padding = 0
                self.config.set('input','padding',str(padding))
                if self.config.has_option('condor','bayeswave'):
                    if (np.log2(seglen)%1):
                        seglen = np.power(2., np.ceil(np.log2(seglen)))
840

841 842
            else:
                psdlength = 32*seglen
843
        else:
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
            seglen = max(e.duration for e in self.events)
            if os.path.isfile(os.path.join(self.basepath,'psd.xml.gz')) or self.config.has_option('condor','bayesline') or self.config.has_option('condor','bayeswave'):
                psdlength = 0
                padding = 0
                self.config.set('input','padding',str(padding))
                if self.config.has_option('condor','bayeswave'):
                    if (np.log2(seglen)%1):
                        seglen = np.power(2., np.ceil(np.log2(seglen)))
            else:
                psdlength = 32*seglen
        # Assume that the data interval is (end_time - seglen -padding , end_time + psdlength +padding )
        # -> change to (trig_time - seglen - padding - psdlength + 2 , trig_time + padding + 2) to estimate the psd before the trigger for online follow-up.
        # Also require padding before start time
        return (min(times)-padding-seglen-psdlength+2,max(times)+padding+2)

    def setup_from_times(self,times):
        """
        Generate a DAG from a list of times
        """
        for time in self.times:
            self.add_full_analysis(Event(trig_time=time))

    def select_events(self):
        """
        Read events from the config parser. Understands both ranges and comma separated events, or combinations
        eg. events=[0,1,5:10,21] adds to the analysis the events: 0,1,5,6,7,8,9,10 and 21
        """
871
        events=[]
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        times=[]
        raw_events=self.config.get('input','events').replace('[','').replace(']','').split(',')
        for raw_event in raw_events:
            if ':' in raw_event:
                limits=raw_event.split(':')
                if len(limits) != 2:
                    print("Error: in event config option; ':' must separate two numbers.")
                    exit(0)
                low=int(limits[0])
                high=int(limits[1])
                if low>high:
                    events.extend(range(int(high),int(low)+1))
                elif high>low:
                    events.extend(range(int(low),int(high)+1))
            else:
                events.append(int(raw_event))
888
        return events
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903
    def setup_from_inputs(self):
        """
        Scan the list of inputs, i.e.
        gps-time-file, injection-file, sngl-inspiral-file, coinc-inspiral-file, pipedown-database
        in the [input] section of the ini file.
        And process the events found therein
        """
        events=[]
        gpsstart=None
        gpsend=None
        if self.config.has_option('input','gps-start-time'):
            gpsstart=self.config.getfloat('input','gps-start-time')
        if self.config.has_option('input','gps-end-time'):
            gpsend=self.config.getfloat('input','gps-end-time')
904
        inputnames=['gps-time-file','burst-injection-file','injection-file','coinc-xml','pipedown-db','gid','gstlal-db']
905 906 907 908 909 910 911 912 913 914 915 916 917
        ReadInputFromList=sum([ 1 if self.config.has_option('input',name) else 0 for name in inputnames])
        # If no input events given, just return an empty list (e.g. for PP pipeline)
        if ReadInputFromList!=1 and (gpsstart is None or gpsend is None):
            return []
        # Review: Clean up this section
        if self.config.has_option('input','events'):
            selected_events=self.config.get('input','events')
            print('Selected events %s'%(str(selected_events)))

            if selected_events=='all':
                selected_events=None
            else:
                selected_events=self.select_events()
918
        else:
919 920 921 922 923 924
            selected_events=None

        if(self.config.has_option('engine','correlatedGaussianLikelihood') or
           self.config.has_option('engine','bimodalGaussianLikelihood') or
           self.config.has_option('engine','rosenbrockLikelihood')):
            analytic_test = True
925
        else:
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
            analytic_test = False

        # No input file given, analyse the entire time stretch between gpsstart and gpsend
        if self.config.has_option('input','analyse-all-time') and self.config.getboolean('input','analyse-all-time')==True:
            print('Setting up for analysis of continuous time stretch %f - %f'%(gpsstart,gpsend))
            if self.config.has_option('engine','seglen'):
                seglen=self.config.getfloat('engine','seglen')
            else:
                print('ERROR: seglen must be specified in [engine] section when running without input file')
                sys.exit(1)
            if(self.config.has_option('input','segment-overlap')):
                overlap=self.config.getfloat('input','segment-overlap')
            else:
                overlap=32.;
            if(overlap>seglen):
                print('ERROR: segment-overlap is greater than seglen')
                sys.exit(1)
            # Now divide gpsstart - gpsend into jobs of seglen - overlap length
            t=gpsstart
            events=[]
            while(t<gpsend):
                ev=Event(trig_time=t+seglen-2)
                ev.set_engine_option('segment-start',str(t-overlap))
                if not analytic_test:
                    ev.set_engine_option('time-min',str(t))
                tMax=t + seglen - overlap
                if tMax>=gpsend:
                    tMax=gpsend
                if not analytic_test:
                    ev.set_engine_option('time-max',str(tMax))
                events.append(ev)
                t=tMax
            return events

        # ASCII list of GPS times
        if self.config.has_option('input','gps-time-file'):
            times=scan_timefile(self.config.get('input','gps-time-file'))
            if self.config.has_option('input','timeslides-ascii'):
            # The timeslides-ascii files contains one row per trigtime, and a column per IFO
            # Note: the IFO order is the same given in the ifos section of the [analysis] tag
                print("Reading timeslides from ascii file. Columns order is understood as follow:")
                for this_ifo,ifo in enumerate(self.ifos):
                    print("Column %d"%this_ifo + "= %s "%(ifo))
                dest=self.config.get('input','timeslides-ascii')
                if not os.path.isfile(dest):
                    print("ERROR the ascii file %s containing the timeslides does not exist\n"%dest)
                    exit(1)
                else:
                    from numpy import loadtxt
                    data=loadtxt(dest).reshape(-1,len(self.ifos))
                    if len(self.ifos)!= len(data[0,:]):
                        print("ERROR: ascii timeslide file must contain a column for each IFO used in the analysis!\n")
                        exit(1)
                    if len(times)!=len(data[:,0]):
                        print('ERROR: ascii timeslide must contain a row for each trigtime. Exiting...\n')
                        exit(1)
                    timeslides={}
                    for this_time,time in enumerate(times):
                        timeslides[this_time]={}
                        for this_ifo,ifo in enumerate(self.ifos):
                            timeslides[this_time][ifo]=data[this_time,this_ifo]
                events=[Event(trig_time=time,timeslide_dict=timeslides[i_time]) for i_time,time in enumerate(times)]
            else:
                events=[Event(trig_time=time) for time in times]
        # Siminspiral Table
        if self.config.has_option('input','injection-file'):
            injTable = lsctables.SimInspiralTable.get_table(
993
                              ligolw_utils.load_filename(self.config.get('input','injection-file'),
994 995 996 997 998 999
                                                  contenthandler=lsctables.use_in(ligolw.LIGOLWContentHandler)) )
            events=[Event(SimInspiral=inj) for inj in injTable]
            self.add_pfn_cache([create_pfn_tuple(self.config.get('input','injection-file'))])
        # SimBurst Table
        if self.config.has_option('input','burst-injection-file'):
            injfile=self.config.get('input','burst-injection-file')
1000
            injTable=lsctables.SimBurstTable.get_table(ligolw_utils.load_filename(injfile,contenthandler = lsctables.use_in(LIGOLWContentHandler)))
1001 1002 1003
            events=[Event(SimBurst=inj) for inj in injTable]
            self.add_pfn_cache([create_pfn_tuple(self.config.get('input','burst-injection-file'))])
        # LVAlert CoincInspiral Table
1004 1005
        gid = None
        if self.config.has_option('input','gid') or self.config.has_option('input', 'coinc-xml'):
1006 1007 1008 1009 1010 1011
            flow=20.0
            if self.config.has_option('lalinference','flow'):
                flow=min(ast.literal_eval(self.config.get('lalinference','flow')).values())
            threshold_snr = None
            if not self.config.has_option('engine','distance-max') and self.config.has_option('input','threshold-snr'):
                threshold_snr=self.config.getfloat('input','threshold-snr')
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

            # get coinc object and psd object
            from lal import series as lalseries
            psd_file_obj = None
            if self.config.has_option('input', 'gid'):
                from ligo.gracedb.rest import GraceDb, HTTPError
                gid = self.config.get('input', 'gid')
                if self.config.has_option('analysis','service-url'):
                    client = GraceDb(
                        service_url=self.config.get('analysis', 'service-url')
                    )
                else:
                    client = GraceDb()
                print("Download %s coinc.xml" % gid)
                coinc_file_obj = client.files(gid, "coinc.xml")
                try:
                    downloadpsd = (not self.config.getboolean('input','ignore-gracedb-psd'))
                except:
                    downloadpsd = True
                if downloadpsd:
                    print("Download %s psd.xml.gz" % gid)
                    try:
                        psd_file_obj = client.files(gid, "psd.xml.gz")
                    except HTTPError:
                        print("Failed to download %s psd.xml.gz. lalinference will estimate the psd itself." % gid)
            else:
                coinc_file_obj = open(self.config.get('input', 'coinc-xml'), "rb")
                try:
                    psd_file_obj =  open(self.config.get('input', 'psd-xml-gz'), "rb")
                except:
                    print("lalinference will estimate the psd itself.")

            # write down the objects to files
            coinc_xml_obj = ligolw_utils.load_fileobj(
                coinc_file_obj,
                contenthandler = lsctables.use_in(ligolw.LIGOLWContentHandler)
            )[0]
            ligolw_utils.write_filename(
                coinc_xml_obj, os.path.join(self.basepath, "coinc.xml")
            )
            if psd_file_obj is not None:
                path_to_psd = os.path.join(self.basepath, "psd.xml.gz")
                psd_xml_obj = ligolw_utils.load_fileobj(
                    psd_file_obj,
                    contenthandler = lalseries.PSDContentHandler
                )[0]
                psd_dict = lalseries.read_psd_xmldoc(psd_xml_obj)
                ligolw_utils.write_filename(psd_xml_obj, path_to_psd, gz = True)
                ifos = sorted(
                    lsctables.CoincInspiralTable.get_table(
                        coinc_xml_obj
                    )[0].instruments
                )
                get_xml_psds(
                    os.path.realpath(path_to_psd), ifos,
                    os.path.realpath(os.path.join(self.basepath, "PSDs")),
                    end_time=None
                )
            else:
                psd_dict = None

            events = create_events_from_coinc_and_psd(
                         coinc_xml_obj, psd_dict, gid, threshold_snr=None, flow=flow,
                         roq=self.config.getboolean('analysis','roq')
                     )

1078 1079
        # pipedown-database
        if self.config.has_option('input','gstlal-db'):
1080 1081
            queryfunc=get_zerolag_lloid
            dbname=self.config.get('input','gstlal-db')
1082
        elif self.config.has_option('input','pipedown-db'):
1083 1084
            queryfunc=get_zerolag_pipedown
            dbname=self.config.get('input','pipedown-db')
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
        else: dbname=None
        if dbname:
            db_connection = open_pipedown_database(dbname,None)[0]
            # Timeslides
            if self.config.has_option('input','time-slide-dump'):
                timeslidedump=self.config.get('input','time-slide-dump')
            else:
                timeslidedump=None
            if self.config.has_option('input','min-cfar'):
                mincfar=self.config.getfloat('input','min-cfar')
            else:
                mincfar=-1
            if self.config.has_option('input','max-cfar'):
                maxcfar=self.config.getfloat('input','max-cfar')
            else:
                maxcfar=-1
            if self.config.get('input','timeslides').lower()=='true':
                events=get_timeslides_pipedown(db_connection, gpsstart=gpsstart, gpsend=gpsend,dumpfile=timeslidedump,max_cfar=maxcfar)
            else:
                events=queryfunc(db_connection, gpsstart=gpsstart, gpsend=gpsend, dumpfile=timeslidedump,max_cfar=maxcfar,min_cfar=mincfar)
        if(selected_events is not None):
            used_events=[]
            for i in selected_events:
                e=events[i]
                e.event_id=i
                used_events.append(e)
            events=used_events
        if gpsstart is not None:
1113
            events = list(filter(lambda e: not e.trig_time<gpsstart, events))
1114
        if gpsend is not None:
1115
            events = list(filter(lambda e: not e.trig_time>gpsend, events))
1116
        return events
John Douglas Veitch's avatar
Working  
John Douglas Veitch committed
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    def add_full_analysis_lalinferencenest(self,event):
        """
        Generate an end-to-end analysis of a given event (Event class)
        For LALinferenceNest code. Uses parallel runs if specified
        """
        evstring=str(event.event_id)
        if event.trig_time is not None:
            evstring=str(event.trig_time)+'-'+str(event.event_id)
        if self.config.has_option('analysis','nparallel'):
            Npar=self.config.getint('analysis','nparallel')
1128
        else:
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
            Npar=4
        # Set up the parallel engine nodes
        enginenodes=[]
        bwpsdnodes={}
        for i in range(Npar):
            n,bwpsdnodes=self.add_engine_node(event,bwpsdnodes)
            if n is not None:
                if i>0:
                    n.add_var_arg('--dont-dump-extras')
                enginenodes.append(n)
        if len(enginenodes)==0:
            return False
        myifos=enginenodes[0].get_ifos()
        # Merge the results together
        pagedir=os.path.join(self.webdir,evstring,myifos)
        #pagedir=os.path.join(self.basepath,evstring,myifos)
        mkdirs(pagedir)
        mergenode=MergeNode(self.merge_job,parents=enginenodes,engine='nest')
        mergenode.set_pos_output_file(os.path.join(self.posteriorpath,'posterior_%s_%s.hdf5'%(myifos,evstring)))
        self.add_node(mergenode)
        # Call finalize to build final list of available data
        enginenodes[0].finalize()
        enginenodes[0].set_psd_files()
        enginenodes[0].set_snr_file()
        if self.config.getboolean('analysis','coherence-test') and len(enginenodes[0].ifos)>1:
1154
            if self.site!='local':
1155
                zipfilename='postproc_'+evstring+'.tar.gz'
1156
            else:
1157 1158 1159 1160
                zipfilename=None
            respagenode=self.add_results_page_node(resjob=self.cotest_results_page_job,outdir=pagedir,parent=mergenode,