Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
L
lalsuite
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
109
Issues
109
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
28
Merge Requests
28
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lscsoft
lalsuite
Commits
421159f5
Commit
421159f5
authored
Mar 27, 2018
by
John Douglas Veitch
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix latex inclusion in documentation to please doxygen
parent
9f942237
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
4 deletions
+4
-4
lalinference/src/distance_integrator.h
lalinference/src/distance_integrator.h
+4
-4
No files found.
lalinference/src/distance_integrator.h
View file @
421159f5
...
...
@@ -33,7 +33,7 @@ double log_radial_integral(double r1, double r2, double p, double b, int k, int
* Distance integrator for marginalisation. Assumes a besselI0-type marginalised phase likelihood.
* @param r1 Minimum distance (Mpc)
* @param r2 Maximum distance (Mpc)
* @param k Exponent of distance prior
$ p(r) \propto r^k
$
* @param k Exponent of distance prior
\f$ p(r) propto r^k \f
$
* @param cosmology 0: Euclidean, 1: use co-moving volume prior
* @param pmax: The maximum optimal SNR to allow
* @param size: Size of lookup table
...
...
@@ -48,10 +48,10 @@ void log_radial_integrator_free(log_radial_integrator *integrator);
/**
* Evaluate the log distance integrator for given SNRs.
* With a template at reference distance (1Mpc), compute the marginal likelihood
* over distance. Uses the two SNRs
p=sqrt(<h|h>) and b=<d|h>
.
* over distance. Uses the two SNRs
\f$ p=sqrt(<h|h>) \f$ and \f$ b=<d|h> \f$
.
* @param integrator a log_radial_integrator
* @param p The optimal SNR
$p = sqrt(<h|h>)
$
* @param b match between template and data
$b = <h|d>
$
* @param p The optimal SNR
\f$ p = sqrt(<h|h>) \f
$
* @param b match between template and data
\f$ b = <h|d> \f
$
* @param log_p log(p)
* @param log_b log(b)
*/
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment