Maintenance will be performed on,,, and starting 2 March 2020 at approximately 8am MST. It is expected to take around 10 minutes and will include a short period of downtime towards the end of the maintenance window. Please direct any comments, concerns, or questions to

Commit 84c2e0a2 authored by John Douglas Veitch's avatar John Douglas Veitch

Add documentation

parent 853d67cd
......@@ -23,8 +23,30 @@ void dVC_dVL_init(void);
double log_radial_integrand(double r, void *params);
double log_radial_integral(double r1, double r2, double p, double b, int k, int cosmology);
* Distance integrator for marginalisation. Assumes a besselI0-type marginalised phase likelihood.
* @param r1 Minimum distance (Mpc)
* @param r2 Maximum distance (Mpc)
* @param k Exponent of distance prior $ p(r) \propto r^k $
* @param cosmology 0: Euclidean, 1: use co-moving volume prior
* @param pmax: The maximum optimal SNR to allow
* @param size: Size of lookup table
log_radial_integrator *log_radial_integrator_init(double r1, double r2, int k, int cosmology, double pmax, size_t size);
* Free an integrator
void log_radial_integrator_free(log_radial_integrator *integrator);
* Evaluate the log distance integrator for given SNRs.
* With a template at reference distance (1Mpc), compute the marginal likelihood
* over distance. Uses the two SNRs p=sqrt(<h|h>) and b=<d|h>.
* @param integrator a log_radial_integrator
* @param p The optimal SNR $p = sqrt(<h|h>)$
* @param b match between template and data $b = <h|d> $
* @param log_p log_b the logs of the above params
double log_radial_integrator_eval(const log_radial_integrator *integrator, double p, double b, double log_p, double log_b);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment