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I. OVERVIEW

BayesWave is a Bayesian parameter estimation and model selection code designed to follow-up candidate events from
Burst search pipelines. The outputs of the algorithm are relative evidence estimates for each of three models for the
data: (i) Gaussian noise, (ii) Gaussian and transient noise “glitches”, or (iii) Gaussian noise and a gravitational wave
signal coherent across the detector network. The evidence is a large multidimensional integral that must be numerically
calculated with a Markov Chain Monte Carlo algorithm. Because of the dimension of the models, O

(
107

)
points are

needed for the numerical integration. Each sample in the MCMC is relatively cheap to compute – the BayesWave
model is inconsequential compared to, say post-Newtonian templates used in CBC searches – but there is no getting
around the large number of trials needed in the Monte Carlo integration. Before computing evidence for each model,
BayesWave uses a combination of the glitch model and the BayesLine algorithm to estimate the noise power spectral
density used in the Gaussian noise model. The two algorithms are described in great detail in Refs [1, 2].
For GW signals BayesWave provides sky maps, reconstructed waveforms, and posterior distribution functions for

waveform characteristics such as central frequency, bandwidth, duration, signal energy, etc. The algorithm also
provides reconstructed waveforms and parameter estimates for glitches which can be used in detector characterization
studies The goal is to enable high-confidence detections by rejecting giltches, and to infer properties of
the gravitational wave signals.
BayesWave uses a linear combination of sine-Gaussian wavelets as the model for glitches and signals. A Re-

versible Jump Markov Chain Monte Carlo (RJMCMC) algorithm marginalizes over the number of basis functions
used in the linear combination. To compute the evidence we use thermodynamic integration which requires sev-
eral RJMCMCs to be run simultaneously, each sampling from a different likelihood function. In studies using
archived data, we have seen that the hierarchical pipeline of coherent WaveBurst combined with follow-up anal-
ysis by BayesWave gives improved separation of signals and glitches, compared with coherent WaveBurst alone. See
https://wiki.ligo.org/Bursts/BayesWave/BwbImbh for details.
BayesWave investigates coherent WaveBurst triggers using only the GPS time of an event, either zero-lag or time

slides. For each GPS time BayesWave analyses 4 seconds of data with a sampling frequency of 4096 Hz. The (log)
Bayes factors (evidence ratios) between the signal and glitch model and signal to noise model are used to determine
the significance of a candidate event. We analyze coherent WaveBurst triggers from time slides to estimate the
background for the signal to glitch Bayes factors.

II. COMPUTATIONAL COST ESTIMATE

A. Computing Cost “First Principles” Estimate

In order to compute the evidence for each model, BayesWave performs an RJMCMC with 2× 106 steps for each of
20 chains. At each step, the main cost in the algorithm is computing the glitch/signal waveform and the likelihood
that the model fits the data, which involves and integral in the Fourier domain over the bandwidth of waveform.
Fourier transforms of sine-Gaussians are computed analytically so there are no calls to FFTs. Typical bandwidths
are ∼ 4 × 103 Fourier samples (i.e. frequency bins). A careful walkthrough of the code shows that each likelihood
evaluation requires 60 FLOPs per bin. We can then estimate the total cost of running 1 trigger as:

2× 106 bins/chain/model× 20 chains× 60 FLOPs/bin× 4× 103bins× 4 models = 4× 1013 FLOPs

This simple estimate is within a factor of 4 of the speeds we see when benchmarking the code. It does not include once-
per-iteration computations that may have significant cost, including proposal distributions for extrinsic parameters,
the LIGO response functions for the GW model (involving several trigonometric functions), additional calls to the
waveform function to compute co-variance matrices, and matrix inversions to determine eigenvalues and eigenvectors
of said matrices.

B. Benchmarking

BayesWave has been tested on dedicated benchmarking cores at CIT. For our test suite we have used the 32 most
significant coherent WaveBurst background events from the L1H1 network during S6D using our current default
settings. Median run-times are ∼ 24 hours per trigger on a single core. Figure 1 shows a histograms of CPU time
in hours on the dedicated cores for the 32 background events. Additional background events and injections will be
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FIG. 1. Histogram of CPU time for each BayesWave run. Benchmarking was performed on a dedicated node on CIT analyzing
the 32 most significant coherent WaveBurst background events from S6D.

included as our benchmarking efforts continue. The left-hand plot (red histogram) shows the results when running
16 jobs at a time (one job per core). The right hand plot is running 36 jobs simultaneously (2 jobs per core). Why
the increase in wall time is less than a factor of 2 is something we need to investigate.

C. Estimated Search Cost

BayesWave is designed to act as a “follow-up” pipeline to interesting GPS times identified by other pipelines. By
design, the run-time for a single BayesWave trigger is relatively stable from event to event. This is because BayesWave
uses a fixed number of steps in the Markov-chain. For the parameter space discussed in this document, we have found
that chain “convergence” can typically be achieved with chains using two million iterations, and 20 chains. This leads
to a run time per trigger, τ , of 20-24 hours, on a single core. Continued bench-marking and optimization of τ is
currently in progress, and is discussed in this document.
Because τ is stable from event-to-event, the computational cost of a full search can be estimated using only τ and

the number of triggers to be analyzed, N . The total cost of a search in CPU-hours is simply τ ×N . For each aspect of
the search, we estimate the O1 computing cost. Extenstion to O2 and O3 is possible by scaling the expected livetime,
and by multiplying by 3/2 for 3 detectors instead of 2.

1. Online search and time-slides

In low-latency, we wish to identify significant candidate events, as well as produce parameter estimation results
(waveform reconstruction, sky localization, etc.). Identifying event candidates can be achieved using a “3-σ” level
background, which corresponds to ∼ 300 time-slides. Because we wish to follow-up events which may be sent to
astronomers for EM follow-up, we set our threshold for follow-up at a coherent WaveBurst false alarm rate of 2
triggers per week.
For 8 weeks of livetime in O1, this leads to 16 triggers per lag, or Nonline = 4800 triggers for all lags in O1.

Nonline = 2 triggers per week X 8 weeks X 300 time-slides = 4800 triggers

2. Simulation

For simulation, we find that 300 injections per waveform type is sufficient to characterize the pipeline efficiency.
The ”standard” Burst MDC includes 33 waveform types. So, a full simulation run with BayesWave would require 300
× 33 = 10,000 injections. We expect that such a ”full” simulation set would be analyzed once for each observing run.
So, Nsimulation = 10, 000 triggers for each observing run.

Nsimulation = 300 injections X 33 waveforms = 10,000 triggers
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3. Development

For testing and de-bugging, we have found it useful to run jobs in batches of 250 triggers, on average once every 2
weeks. For 1 year, this is 250 triggers × 26 runs = 6500 triggers per year. So, each year of development corresponds
to Ndevelopment = 6500 triggers.

Ndevelopment = 250 triggers X 26 runs = 6500 triggers

4. Detection Follow-up

BayesWave will run additional lags to accumulate high statistics for any possible detection candidate. To trigger
this follow-up, an event must have a cWB FAR of less than 1 per 2 years. The additional follow-up targets a “4-σ”
detection confidence level, and so requires 100,000 lags.

Nfollow−up = 100,000 lags X 0.2 years livetime X 0.5 trigs/year = 10,000 triggers

5. Totals

We can compute the total search cost by taking the total number of triggers that need to be processed, and
multiplying by the median run time of 24 hours per trigger.

Run NTotal SUs

O1 32,000 Triggers 770,000 SU

O2 66,000 Triggers 1,600,000 SU

O3 90,000 Triggers 2,200,000 SU

III. PARAMETERS THAT EFFECT COMPUTING COST

1. The coherent WaveBurst FAR of the online search sets the production costs. Raising the coherent WaveBurst
threshold would reduce cost, at the expense of potentially missing weak signals. This could be optimized using
studies. This is likely a factor of ∼ 2 uncertainty in the production cost.

2. Simulations are used only to test the pipeline and set upper-limits - they are not used in detection statements.
For this reason, it is possible to vary the number of simulations. We have attempted to quantify the minimum
number needed to explore parameter space. However, there are possible trade-offs in the number of simulations
we perform. This leads to a factor of ∼ 2 uncertainty in the simulation cost.

3. The coherent WaveBurst FAR used for detection follow-up has similar trade-offs as in production. Reducing
this threshold would reduce computing costs, potentially at the expense of missing marginally detectable signals.

For each BayesWave analysis the run time is determined by the number of chains used for the thermodynamic
integration, the number of RJMCMC steps for each chain, and the time-frequency volume of the data being analyzed.
The default settings for these key quantities have been determined empirically through analysis of background events
and injections. There are many command line options that control proposal distributions that drive the RJMCMC
exploration of the parameter space, and additional “knobs” to tune the prior distributions that define our signaland
glitch models.
Options relating to the proposal distributions impact the computational efficiency of the search through the cor-

relation lengths of the Markov Chains, thereby setting the demand for the number of samples in the chain.Options
controlling the prior distributions impact the overall effectiveness of the algorithm in terms of the fidelity of the
waveform reconstructions and the ability to distinguish signals from glitches. The prior on the number of wavelets
can have a significant impact on the computational cost.
There is a complicated interplay between the settings used to define the priors and the settings in the proposal

distributions that result in the shortest correlation lengths. We have begun a systematic exploration of this high
dimensional space of possible settings.
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IV. COMPLETED OPTIMIZATION WORK

A. Methodological

The best way to increase the efficiency of a Markov Chain Monte Carlo algorithm is to improve the frequency with
which proposed trial locations in parameter space are accepted by the chain. Time spent developing good proposals is
time saved when running the MCMC. We use a variety of custom time-frequency proposals for placing the wavelets.
One is based on a pilot run with maximization over phase, time and amplitude that locates regions of excess power.
This is then used to produce a proposal distribution that preferentially proposes adding wavelets in regions where
there is excess power. We also use a time-frequency proposal that preferentially proposes to add new wavelets in the
vicinity of existing wavelets in the model.
For the GW model we take advantage of the known degeneracy in sky location parameters along ring of constant

time delay between detectors in a 2-interferometer network. New sky location parameters are preferential chosen to
lie along the ring on the celestial sphere.

B. Algorithmic

We have implemented several algorithmic “tricks” to minimize the computational cost of each sample in the MCMC.

1. Recursion relations for sine-Gaussian phase: The Fourier domain wavelet model can be separated into a
frequency dependent amplitude A(f) and a frequency dependent phase term eiΦ(f) where Φ(f) ∼ 2πt0(f − f0).
A brute-force calculation of the phase would require calling trigonometric functions at each Fourier bin. Instead
we take advantage of the recursion relationship for the jth Fourier bin:

e−i2π∆fj = e−i2π∆f(j−1) + e−i2π∆f(j−1)
(
e−i2π∆f − 1

)
where each Fourier sample is separated by ∆f = 1/T and T is the total observation time. Using this relation
we only need to use trigonometric functions to determine the phase at the lowest frequency in the bandwidth of
interest and the phase shift term e−i2π∆f . We similarly take advantage of this relationship when time-shifting
the GW model to compute the response of each detector.

2. Limited bandwidth for sine-Gaussian waveforms: The wavelet basis functions we use for the signal and
glitch model have compact time frequency support, with bandwidth determined by 2πf/Q. When we propose
new wavelet parameters we only need to compute changes to our model over the bandwidth of the signal

3. Computing likelihood only over frequency bins where model has changed: We can similarly take
advantage of the small bandwidth of the wavelets by limiting how many samples are included in the likelihood
evaluation at each point in the MCMC. Typically the MCMC algorithm uses the ratio of the likelihood at the
proposed parameters to the current parameters to determine if the new position will be adopted. The likelihood
ratio is 1 everywhere except in frequency bins where the waveforms have changed, i.e. over a bandwidth much
smaller than the full band of the data. We can directly compute the likelihood ratio by only considering how
the frequencies encompassed by the bandwidth of the wavelet with a proposed update change.

4. Adaptive temperature spacing for parallel tempering: We have recently adopted the adaptive temper-
ature scheme in [3]. Doing so has enabled us to use 20% fewer chains while achieving better convergence for
the MCMC using our fixed 2× 106 samples.

C. Code

We have started a systematic optimization process of the BayesWave code. Our first step was to add the -O3 flag
when compiling the code with gcc. By looking at runtime values in Condor logfiles, we observed that this increased
speeds by a factor of 3. As a second step, we set up a test run and profiled it. The test run we used consists of a signal
injection from an xml table and 5000 MCMC iterations. We profiled the code performance by using the perf tool and
recording cpu-clock events on the CIT pcdev1 headnode for our short test run. According to the profiling results, the
top 4 functions in terms of runtime were: ThermodynamicIntegration (∼ 25%), EvaluateMarkovianLogLikelihood
(∼ 24%), ieee754 exp (∼ 13%), and ieee754 log (∼ 6%). Two BayesWave functions were, therefore, taking up
50% of the runtime. By looking at the profiling results of the functions individually, we were able to spot a major
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bottleneck within EvaluateMarkovianLogLikelihood, caused by two if conditions within two nested loops. By
rearranging this section of the code, we obtained a consistent speed-up: the runtime was reduced by 17%. Secondly,
we went through the code routines and systematically used strict inequalities, introduced more auxiliary variables
to avoid duplicate operations, and favoured multiplication over division operations, where possible. This excercise
pushed the speed-up to ∼ 22%. At this point we ran a production run (i.e., the same setup of the test run, but with
1500000 iterations) on Condor and found that the changes introduced had reduced the runtime by about ∼ 32%.

V. ON-GOING OPTIMIZATION WORK

A. Methodological

We have identified a number of straight-forward optimizations that should be simple to implement. Substantial
testing will be needed before these optimizations can be deemed “ready” for use in a search. Our goal is to have these
implemented and tested in time for O2, but we have not accounted for any gains in performance for our computing
request that rely on code that does not yet exist.

1. Hierarchical model comparisons: BayesWave serves two main functions, parameter estimation and model
selection. Parameter estimation requires far fewer chains in the temperature ladder than is needed in the
thermodynamic integration of the evidence used in model selection. The difference is a factor of ∼ 5 speed
up. We are investigating ways to get crude estimates of the evidence with the few chains needed for parameter
estimation in a hierarchical scheme where the more expensive full evidence calculations are only performed
when there is not a clear winner between the noise, glitch and signal models. This will significantly reduce
the total cost of the background analysis – our experience from running on glitches from S6 has shown that
∼ 80% of background events are easily identifiable as glitches by BayesWave and only ∼ 20% would require
the full evidence integral follow up. There is potential for great savings if this trend persists for the modern
implementation of coherent WaveBurst and for Advanced LIGO background glitches.

2. Different TFV for different triggers: The CPU demand of a BayesWave run is approximately proportional
to the amount of data being used in the analysis. BayesWave uses trigger times from coherent WaveBurst to
select which data to analyze. BayesWave uses a 4 second window centered on the GPS time from the search and a
sampling rate of 4096 Hz. The sampling rate is chosen so that BayesWave’s bandwidth is similar to the standard
coherent WaveBurst all sky search. Because we are simultaneously estimating the noise power spectrum we
choose a segment length of 4 seconds to ensure that we have enough data for good spectral estimation down to 30
Hz. The exact choice of segment length and bandwidth could be adapted depending on the maximum likelihood
central frequency of the trigger. Low frequency triggers, say around 200 Hz, could use a lower sampling rate
(i.e. 1024 Hz) which would improve run time by a factor of ∼ 4 while high frequency triggers at ∼ 1 kHz could
use shorter segments of data and only consider frequencies above ∼ 256 Hz so that we still have reliable spectral
estimation. Exactly where to divide the follow-up analysis will need to be optimized, and care will be required
to ensure that we still achieve good spectral estimation and that the likelihood support for our glitch/signal
model does not go to the edge of the restricted prior range on time and frequency.

B. Algorithmic

C. Code

We have recently started experimenting with architecture-dependent compilation flags and, so far, were able to
speed-up our test run further (∼ 25% with respect to our initial, un-optimized test run performed with a -O3
compiled executable). This speed up should correspond to a ∼ 35% speed-up in a production run, with respect to the
original code. We plan to experiment further in this direction and to continue with the profiling work that we started
recently. Additionally, we will consider the possibility of parallelizing the most computationally expensive parts of
our code.
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VI. FUTURE OPTIMIZATION

A. Methodological

The key is to get a large number of independent samples of the posterior distribution for the model parameters.
MCMC sampling techniques produce correlated samples with some correlation length.

One way to cut the computational cost is to reduce the correlation length, so that the same number of independent
samples can be harvested from a smaller number of evaluations of the prior and likelihood. Note that the correlation
length is not the same for all parameters. Correlation lengths for sky location parameters (for making sky maps)
are of order 1000 samples while the correlation length for the likelihood (for evidence calculation) is of order 100
samples. It can be tricky to compute correlation lengths in a RJMCMC since the dimension of the parameter space
changes. The situation is especially difficult for the wavelet parameters, as the wavelets blink in and out of existence
from one sample to the next and there is no reliable way to identify which parameters belong to a physical state.
We can measure the autocorrelation of the model dimensions indicator variable, which tells us how well the chains
are executing trans-dimensional moves (∼ 200 − 300 for our standard test-sure background event). We can also do
tests where we fix the model dimension and turn off the wavelet swapping transitions (so-called birth-death moves),
so that we can compute correlation lengths for the wavelet parameters.

Through years of effort we have already significantly reduced the correlation lengths using specially designed pro-
posal distributions for the extrinsic parameters in the signal model and for the time-frequency location of wavelets.
Further improvements may be possible by continuing the development of custom proposals.

1. Joint wavelet Fisher matrix proposals Currently the wavelet parameter updates are based on a Fisher
matrix approximation to the likelihood that assumes no correlation between the parameters of a single wavelet,
nor any correlations between the parameters of different wavelets. Each wavelet has its own Fisher matrix
estimate, and the parameters of wavelets are updated independently in separate steps of the MCMC.

We know that both of these assumptions are incorrect. Correlation lengths can be reduced by using the full Fisher
matrix which accounts for parameter correlations, and updating parameters for all of the wavelets in the model
at each MCMC step. The trade-off here comes from computing this larger matrix and numerically inverting it
to find eigenvectors for a jump proposal. Treating the wavelets independently means these computations can
be done analytically. Code development is required to implement and tune the more complicated proposal and
thorough benchmarking will be needed to test whether the reduction in the correlation length is generically
offset by the additional cost of the more complicated jump proposal.

2. Extrinsic proposals for 3-detector network There are known degeneracies for extrinsic parameters that can
be taken advantage of in jump proposals. We have already implemented a proposal that preferentially draws
sky-location samples along the ring of constant time delay between a pair of interferometers. When a third
detector is added to the network (e.g. Virgo) the ring degeneracy is broken but a near degeneracy exists by
reflecting the current sky-location across the plane of the detectors. The sky location and relative polarization
angle for the two modes in the posterior is known analytically and can be used in a jump proposal. This is a
low priority development task as we focus on our readiness for O1.

B. Algorithmic

1. Analytic marginalization of time and/or phase parameters: The output of a Markov chain is a list
of samples from the posterior distribution function of the model which are then marginalized over nuisance
parameters to arrive at the quantities of interest (e.g. sky maps, credible intervals on parameters, etc.). Fur-
thermore, the evidence is the posterior marginalized over all model parameters. Marginalization over time and
phase parameters can be done analytically [4]. Marginalizing over time and phase parameters complicates the
likelihood evaluations (introducing FFTs and Bessel functions) but reduces the complexity of the model and
the dynamic range of the likelihood. For CBC PE codes the trade off in sampling efficiency has been worth the
added cost of likelihood evaluations. It is worth experimenting with in BayesWave but, because our signal/glitch
model is so inexpensive compared to the CBC waveforms, it may prove to be more computationally efficient to
continue doing that marginalization numerically. Implementing the marginalized likelihoods is a major overhaul
of the code. Because it is a large investment and not a guaranteed return
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C. Code

VII. —- INTERNAL NOTES —–

All searches with non-trivial computing costs should be sure to address the following items, quoted directly from
the NSF charge for the March 2015 review:

• [Provide performance numbers in absolute times to identify performance rate limiting steps.]

• [Justify the choices of compilers and libraries.]

• [Identify and characterize computationally expensive kernels, reporting on measured performance, using descrip-
tive measures such as: What percentage of peak Flops is achieved? What is the percentage of the bandwidth
utilized? Is the kernel vectorized? What is the quality of the vectorization? What is the potential for perfor-
mance optimization of these kernels?]

• [Report on your evaluation of of the parallelization of the code and evaluation of multi-threading to improve
performance.] Markov Chain Monte Carlo algorithms are, by construction, serial stochastic samplers. We use
parallel tempering (running multiple MCMCs) which could be sent to separate cores via MPI as is done in
the CBC PE codes [4]. Parallel chains need to be in frequent communication, so even though multi-threading
decreases wall time CPU time may increase due to the cost of passing information between cores. Different
models (glitch, signal, Gaussian noise) could be run separately, but they all share memory from the PSD-
estimation step at the beginning of each run. It is beyond our expertise, and therefore not obvious to us, if
there are other benefits to parallelizing the code. Nor is it clear to us which is preferred – using a single for ∼ 1
day per job, or ∼ 16 cores for ∼ 1/16 days.

• [Report on your evaluation of hardware accelerators and inexpensive single precision GPUs [and MiC? acceler-
ators].]

• [Specify future production and development computing requirements in SUs rather than cores, along with
schedule for the total number of SUs needed over time, while ensuring adequate computing at peak load.]
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