BayesWave User’s Guide

Authors: Neil Cornish, Tyson Littenberg

Developers: Jonah Kanner, Francesco Pannarale

Abstract. This document is a work-in-progress User’s Guide for the BayesWave
software package. BayesWave uses a linear combination of wavelets to model non-
Gaussian GW data. It can be used to reconstruct and remove glitches, or as
a Burst parameter estimation code. Under the default settings the code outputs
Bayesian evidence for three models under consideration: Gaussian noise only, Gaussian
noise plus glitches, or Gaussian noise plus a GW signal. Optional command line
arguments can restrict the number of models used (e.g., the glitch only model for
noise characterization, or the signal only model for rapid parameter estimation),
deploy BayesWave as a glitch cleaning algorithm, or simultaneously fit for glitches
and gravitational waves.

1 Disclaimer 3
2 Installation 3
3 Running BayesWaveBurst 3
4 BayesWaveBurst Output 6
4.1 Run directory 6
4.2 Chains directoryo 7

5 Post processing with BayesWavePost 8
6 BayesWavePost Output 10
7 Tips 11
7.1 Use Cases oo s 11
7.1.1 Quick test run —test/ 11

7.1.2 Burst MDC injection into simulated data — burst mdc_injection/ 11

7.1.3 CBC injection in simulated data — cbc_xml_injection/ 12

7.1.4 Background glitch rejection — cwb_background_event/ 12

7.2 BayesLine 12

Cache files 12
Condor s 13
Glitch cleaningo 13

Channels 13

1. Disclaimer

This software is VERY MUCH in development and this User’s Guide is in a very
incomplete and amateur state. Things are changing on a weekly basis as we apply
the code to different tasks and add new features to improve performance and run time.
Bear with us.

2. Installation

To check out the SVN:

svn checkout https://svn.ligo.caltech.edu/svn/bayeswave

Anyone with LIGO credentials should be able to checkout the code, but commits are
restricted to developers. To find the source code:

cd [path tol/bayeswave/trunk/src/

Included in the src directory is a Makefile. The first two lines have to be modified to point
to your favorite installation of LAL, GSL, and FFTW. If you are building BayesWaveBurst
on the LDG the makefile should work as-is. Build with:

make

which will create executables for the main analysis and post-processing called
BayesWaveBurst and BayesWavePost
Back to Table of Contents

3. Running BayesWaveBurst

BayesWaveBurst --help

will display the required and (many) optional command line arguments. In the near
future a detailed description of what each option does will appear in a more thorough

User’s Guide.

REQUIRED:

--ifo IFO interferometer (H1,L1,V1)

--IF0-flow minimum frequency, preferably 2V (Hz)
--IF0-cache full path to cache file
--IF0O-channel channel name (IF0:LSC-STRAIN)
-—trigtime GPS trigger time

--srate sampling rate (Hz)

--seglen duration of data (s)

--PSDstart GPS start time for PSD estimation
--PSDlength duration of PSD estimation length
--dataseed Required if using simulated noise e.g. --Hl-cache LALAdLIGO

OPTIONAL:

—--Niter number of iterations (2000000)

--NCmin minimum number of parallel chains (25)

--NCmax minimum number of parallel chains (25)
--Ncycle number of model updates per BurstRIJMCMC iteration (100)
--Nburnin number of burn-in iterations (100000)
--chainSeed random number seed for Markov chain (1234)
—--runName run name for output files

--Onoise no noise realization

--zeroLogL logl = constant test

--restart restart run using psd and residual from file
--gnuplot output files for gnuplot animations
--verbose output hot chains

—--window duration of time window for model characterization runs

--fullOnly require signal && glitch model

-—noClean skip cleaning phase and go right to reduced window
--cleanOnly run bayesline & glitch cleaning phase only
--noiseOnly use noise model only (no signal or glitches)
--signalOnly use signal model only (no glitches)
—--glitchOnly use glitch model only (no signal)

--noPSDfit keep PSD parameters fixed

--bayesLine use BayesLine for PSD model

--Dmin minimum number of wavelets total (1)

--Dmax maximum number of wavelets per channel (20)

-—clusterPrior use metric-based clustering prior

--clusterAlpha distance between wavelets to be considered a cluster (2)
--clusterBeta cluster prior exp(-beta K) (4)

--clusterGamma occam penalty exp(gammax*J) (0)

--noAmplitudePrior don’t use SNR-dependent amplitude prior

-—clusterProposal don’t use clustering & TF density proposal

--tempMin minimum temperature chain (1)
--adaptTemperature adjust PT ladder to maintain acc. rate from 407% to
60%

--tempSpacing set temperature spacing for geometric ladder (1.5)

--inj injfile.xml Injection XML file to use

-—event N Event number from Injection XML file to use

—-MDC-channel IF01-chan, IF02-chan, etc
--MDC-cache IFO0l1-mdcframe, IF02-mdcframe, etc
--MDC-prefactor Rescale injection amplitude (1.0)

EXAMPLE:

BayesWaveBurst

--ifo H1 --Hl-flow 32 --Hl-cache LALSimAdLIGO --Hl-channel LALSimAdLIGO
-—trigtime 900000000.00 --srate 512 --seglen 4

--PSDstart 900000000 --PSDlength 4

--NCmin 2 --NCmax 2

-—-dataseed 1234

6

Move to a new directory and try running the example command line. You will have
to add the src directory to your path variable

export PATH=[path to]/bayeswave/trunk/src/:$PATH

This will run for ~20 minutes. Real runs take ~ 12 — 24 hours, depending on the
settings and the models being used. Really long segments (1024 s) of really glitchy data
can take a week.

This run will simulate Advanced LIGO data for H1 with a random seed for the
noise realization dataseed = 1234; a low-frequency cutoff of IFO-flow = 32 Hz; a total
observation time of seglen = 4 s; and a sampling rate of srate = 512 Hz.

Because we are using LALInference for data handling (which expects in-spiral
signals) the trigtime argument gives the GPS time which will be analyzed. The
analysis window will be seglen seconds long and will end 2 seconds after
trigtime . For seglen T the start time will be

to = trigtime 4+ 2 — seglen (1)
By default, the code runs through 4 phases:

(i) Cleaning: BayesWave assumes all non-Gaussian features are glitches and estimates
the PSD.

(ii) Noise Only: Samples the posterior and computes the evidence for the Gaussian
noise model (the data contains only Gaussian noise)

(iii) Glitch Only: Samples the posterior and computes the evidence for the Glitch model
(the data contains Gaussian noise and at least one glitch)

(iv) Signal Only: Samples the posterior and computes the evidence for the Signal model
(the data contains Gaussian noise and a GW signal).

Back to Table of Contents

4. BayesWaveBurst Output

When BayesWave is finished you will find several files in the run directory and three
subdirectories (snr/, chains/, and waveforms/). The directories snr/ and waveforms/
will be empty if you use the example command line above.

4.1. Run directory

The *.run files contain settings for each phase of the run

bayeswave.run [settings for full run, plus BayesWaveBurst command line]
clean.run [cleaning phase]

noise.run [Gaussian noise phase]

glitch.run [Glitch+Gaussian noise phase]

signal.run [Signal+Gaussian noise phase

7

The [model] _evidence.dat files contain the integrand of the evidence (Z) integral.
They are used for diagnosing the run. The file evidence.dat contains the computed
evidence for each model. The columns are:

model, In Zyoge1, Var(In Zpoqer)
Results from the example command should be similar to:

noise 0.142466 0.00032892
glitch 0.0188961 0.00180285
signal 0 0.0018743

Everything is normalized by the signal model so it should always be 0. The Bayes Factor
between models Bx y is the evidence ratio, so

Bsignal,noise - eXp(ln Zsignal —In Znoise) ~0.9:1. (2)
The evidence _stacked.dat output file has the same information as evidence.dat but
in a single row:

hl Znoise7 ln Zglitch7 ln Zsignal; V&I‘(ll’l Znoise); Var(ln Zglitch>7 Var(ln Zsignal)

so that many runs can be concatenated and plotted together.

4.2. Chains directory

The chains/ directory contains samples from the Markov chains. There are five types
of chain files, some for repeated for different models:

fourier domain data_ifo/.dat
[clean/noise/glitch/signal/full] intchain.dat.0
[signal/full] extchain.dat.0
[clean/glitch/clean/full] glitchchain ifo/.dat.0
[signal/full] wavechain.dat.0

where I = [0, N;po — 1] and Njpo is the number of IFOs,

The intchain files contain roughly the same information as the intrinsic parameter
(which is roughly the same as the intrinsic parameters from the chain — these files need
to be renamed and reformatted):

cycle, Inlikelihood, Ngignai Néﬁ%ch, e Né;ivg}fO‘l, n!'=0, ..., n!=Nrro=1 1n prior
The extchain files contain the extrinsic parameters of the signal model — this is mostly
redundant with wavechain files but easier to parse:
cycle, Inlikelihood, r.a., sin(dec), ¥, e, 0 A, § ¢, 0t
The glitchchain files contain the parameters of wavelets in the glitch model for ifol:
Naisen, 7[0], -, V[Ngriten — 1]
where [i] — {f[i], t[i], Q[i], A[i], o[d]}-

Finally, the wavechain files which have the parameters for the signal model, including
extrinsic and wavelet parameters

Nsigna1, I.a., sin(dec), ¢, e, 04, 6¢, 0t, (0], ..., Y[Nsigna1 — 1]
Back to Table of Contents

5. Post processing with BayesWavePost

The BayesWavePost code reads the output files from BayesWaveBurst and recreates the
model for each step of the Markov chain. From the recreated model different quantities
of interest (e.g. the waveform “moments” are computed. The result is a Markov chain
for the different moments from which posterior distributions can be computed.

BayesWavePost —--help

will display the required and (fewer) optional command line arguments.

REQUIRED:

--ifo IFO interferometer (H1,L1,V1)

--IF0-flow minimum frequency, preferably 2V (Hz)
—--IF0-cache LALSimAdLIGO: MUST USE SIMULATED DATA
--trigtime GPS trigger time

--srate sampling rate (Hz)

--seglen duration of data (s)

--PSDstart GPS start time for PSD estimation

--PSDlength duration of PSD estimation length

--dataseed 0000: REQUIRED FOR SIMULATED NOISE
--Onoise no noise realization: SET SIMULATED NOISE TO 0

OPTIONAL:

--inj injfile.xml Injection XML file to use

--event N Event number from Injection XML file to use

—--MDC-channel IFO1-chan, IF02-chan, etc
—--MDC-cache IFO0l1-mdcframe, IF02-mdcframe, etc
—--MDC-prefactor Rescale injection amplitude (1.0)

EXAMPLE:

BayesWavePost

--ifo H1 --H1-flow 32 --Hl-cache LALSimAdLIGO
-—trigtime 900000000.00 --srate 512 --seglen 4
--PSDstart 900000000 --PSDlength 4

-—dataseed 0000 --Onoise

10

Most of the command line arguments, such as the sampling rate and trigger time,
must be identical to the BayesWaveBurst run that you used. The three lines highlighted
in red are the exception. Regardless of your BayesWaveBurst command line arguments
BayesWavePost must be given a simulated noise cache (LALSimAdLIO0G), a random seed
for the simulated noise (--dataseed) and, most importantly, the —~—Onoise argument
which explicitly sets the simulated noise realization to all zeroes. This is a bit of a
hack, but the point is to have the injected waveform saved in memory without any
noise so that we can compute overlaps etc. between our recovered signals and the
injection. Because the burst MDC injections and LALSimulation XML injection tables
are handled differently in the data-handling part of the code, we felt this was the easiest
way to get the injected waveforms all by themselves.

Back to Table of Contents

6. BayesWavePost Output

When BayesWavePost is finished you will find a new directory post/ containing:

fregsamp.dat

timesamp.dat

[clean/glitch/injection/signal] [colored/whitened] moments.dat./]
[clean/glitch/signal] recovered_[colored/whitened] waveform.dat./
[clean/glitch/signal] stats.dat./

[colored/whitened] data.dat./

injected_[colored/whitened] waveform.dat./

where I = [0, N;po — 1] and Njpo is the number of IFOs. Many of the files have
“colored” and “whitened” versions. The “colored” files correspond to the model as seen
by the detectors, the “whitened” files have been normalized by the noise PSD.

The * moments.dat./ files contain different scalar moments computed for each
waveform. Each row of the file corresponds to the moments at a different iteration of
the Markov chain. The columns correspond to the moments being computed.:

SNR7 energy, hl‘SS? th At7 fOu Af’ O[[hinja hrecL ONet [hinj7 hrec]

where At is the duration, Af is the bandwidth, and O[a,b] is the overlap between a
and b. Superscript I, as with the filenames, corresponds to a single detector while the
Net superscript is for the network (therefore redundant in the different moments files).
All of these quantities are defined at

https://wiki.ligo.org/pub/Bursts/AllSkyPE /moments.pdf
The *_waveform.dat./ files contain the time domain waveforms printed in a single

row making them unreadable by human. The injected_* waveform is a single row con-
taining the injected waveform. The [clean/glitch/signal] recovered * files contain

https://wiki.ligo.org/pub/Bursts/AllSkyPE/moments.pdf

11

a single row for each sample in the Markov chain. These files are parsed further down-
stream by scripts which generate the output pages.
Back to Table of Contents

7. Tips

7.1. Use Cases

You can find an assortment of example use cases at
https://ldas-jobs.ligo.caltech.edu/~tyson/BayesWave/examples/

including run scripts (script.sh) and output pages (index.html). The different use-
cases can be used as unit tests before you set out on your own study. Available examples
and a brief description follow

7.1.1. Quick test run — test/ This example matches the suggested command line
from the --help output of BayesWaveBurst and BayesWavePost. The run will take
~ 20 minutes, running on a single interferometer (--IF0 H1) using simulated Gaussian
advanced LIGO noise (--H1-cache LALSimAdLIGO --H1-channel H1:LALSimAdLIGO),
a low sampling rate (--srate 512 in Hz) and the minimum number of chains (--NCmin
2) required by the post-processing tools. To compute reliable evidence we typically use
25 chains. Back to Table of Contents

7.1.2. Burst MDC injection into simulated data — burstmdc_injection/ Here is
an example for using BurstMDC injections. The first line of the script secure
copies the frame file to your local directory. The frame file is big so this will
take a while. If you are running on CIT I would recommend pointing your
lalapps_path2cache line directly to the copy in the example directory and commenting
out the gsiscp line. Without the secure copy the run will take ~ 10 hours. This
particular case injects a sine-Gaussian waveform into simulated noise. If you compare
the BayesWaveBurst command line for this event to the test/ run you will find
an additional set of interferometer arguments (--IF0 L1 --Li-cache LALSimAdLIGO
--L1-channel L1:LALSimAdLIGO), a sufficient number of chains to compute the
evidence (--NCmin 25 --NCmax 25) and three additional command line arguments all
starting with MDC-- which handle the injection. The --MDC-cache file is looking
for a LIGO cache file (as made by, e.g., lalapps_path2cache) which contains the
burst MDC frame file, the ——-MDC-channel arguments specify which channel of the
frame file HL-SineGaussian-968046516-4095.gwf contains the injection, and the
--MDC-prefactor is an overall amplitude scaling of the injection to control the signal-
to-noise ratio. Note that the same cache file can contain paths to injection
frame files for different interferometers which is not the case for using real

https://ldas-jobs.ligo.caltech.edu/~tyson/BayesWave/examples/

12

detector noise with the --IF0-cache arguments. Back to Table of Contents

7.1.3. CBC injection in simulated data — cbc_xml_injection/ Back to Table of
Contents

7.1.4. Background glitch rejection — cwb_background event/ Getting the time slide
right is tricky. This example corresponds to a coherent WaveBurst background event
from S6D. The event summary file has GPS times for the glitch in each detector. From
this we compute the correct time-slide. In this example, the trigger time corresponds
to H1 (GPSy1) so we must shift the L1 data to recreate the background event.

AtLl - GPSHl - GPSLl (3)

The time slides should all be integer seconds but the difference of the GPS time will not
be because there are not enough significant digits in the summary tables. Be careful
rounding to the correct nearest integer when the time slide is negative. Heres a snippet
of C code that I used to compute the time slides:

if (1ag>0.0)

{
if(fabs(lag-(int)(lag)) < 0.5) lag=(int) (lag);
else lag=(int) (lag)+1.;

}

else

{
if(fabs(lag-(int)(lag)) < 0.5) lag=(int)(lag);
else lag=(int)(lag)-1.;

}

Back to Table of Contents

7.2. BayesLine

Back to Table of Contents

7.3. Cache files

ligo_data_find -o [observatory] -t [channel type] -s [start time] -e [end

time] --lal-cache —-u file > [name].cache

[observatory] H,L,V (not H1,L1,V1)
[channel type| using H1,L.1,V1 for [IFO]
[IFO] RDSR.L1 S6 LIGO DARM_ERR
[IFO] RDS_C03.L2 S5 LIGO h(t)
HrecOnline VSR1 A(t)
[IFO]_LDAS_C02.L2 S6 LIGO h(t)

13

Example:

ligo_data_find -o L -t L1_RDS_CO3_L2 -s 875000000 -e 875000100 --lal-cache
-u file > 875000000-L1.cache

Back to Table of Contents

7.4. Condor

Back to Table of Contents

7.5. Glitch cleaning

Back to Table of Contents

7.6. Channels

We are set up to run on h(t) and DARM-ERR. If other channels are of interest they
are easy to add, we just need to know reasonable ranges for the PSD. Currently the
supported channel types are For H1 or L1:

LDAS-STRAIN

LSC-DARM_ERR

LALAdLIGO (advanced LIGO simulated data)
LALLIGO (initial LIGO simulated data)

and for V1:

h_16384Hz (for Virgo)
LALAALIGO (advanced LIGO simulated data)
LALLIGO (initial LIGO simulated data)

If the ——IF0-channel option is not one of the above the code will run and may work,
but the channel name is used to set priors for PSD parameters so it could be bad.
Back to Table of Contents

	 Disclaimer
	 Installation
	 Running BayesWaveBurst
	 BayesWaveBurst Output
	Run directory
	Chains directory

	Post processing with BayesWavePost
	 BayesWavePost Output
	 Tips
	Use Cases
	Quick test run – test/
	Burst MDC injection into simulated data – burst_mdc_injection/
	CBC injection in simulated data – cbc_xml_injection/
	Background glitch rejection – cwb_background_event/

	BayesLine
	Cache files
	Condor
	Glitch cleaning
	Channels

