from math import isnan import numbers from django.db import models, IntegrityError from django.urls import reverse from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from model_utils.managers import InheritanceManager #from django.contrib.auth.models import User as DjangoUser #from django.contrib.auth.models import Group from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from guardian.models import GroupObjectPermission import logging; log = logging.getLogger(__name__) import os import glue import glue.ligolw import glue.ligolw.utils import glue.ligolw.table import glue.ligolw.lsctables from glue.ligolw.ligolw import LIGOLWContentHandler from glue.lal import LIGOTimeGPS import json, re from core.models import AutoIncrementModel, CleanSaveModel from core.models import LogBase, m2mThroughBase from core.time_utils import posixToGpsTime from django.conf import settings import pytz import calendar from cStringIO import StringIO from hashlib import sha1 import shutil UserModel = get_user_model() SERVER_TZ = pytz.timezone(settings.TIME_ZONE) # Let's say we start here on schema versions # # 1.0 -> 1.1 changed EventLog.comment from CharField(length=200) -> TextField # schema_version = "1.1" #class User(models.Model): #name = models.CharField(max_length=100) #email = models.EmailField() #principal = models.CharField(max_length=100) #dn = models.CharField(max_length=100) #unixid = models.CharField(max_length=25) #class Meta: #ordering = ["name"] #def __unicode__(self): #return self.name class Group(models.Model): name = models.CharField(max_length=20) def __unicode__(self): return self.name class Pipeline(models.Model): name = models.CharField(max_length=100) # XXX Need any additional fields? Like a librarian email? Or perhaps even fk? def __unicode__(self): return self.name class Search(models.Model): name = models.CharField(max_length=100) description = models.TextField(blank=True) # XXX Need any additional fields? Like a PI email? Or perhaps even fk? def __unicode__(self): return self.name # Label color will be used in CSS, see # https://www.w3schools.com/colors/colors_names.asp for # allowed color choices class Label(models.Model): name = models.CharField(max_length=20, unique=True) # XXX really, does this belong here? probably not. defaultColor = models.CharField(max_length=20, unique=False, default="black") description = models.TextField(blank=False) # protected = True means that the Label should not be "writeable": i.e., # users should not be apply to directly apply or remove it. This is useful # for labels that are added and removed as part of a process, like # signoffs, for examples. protected = models.BooleanField(default=False) def __unicode__(self): return self.name class ProtectedLabelError(Exception): # To be raised when an attempt is made to apply or remove a # protected label to/from an event or superevent pass class RelatedSignoffExistsError(Exception): # To be raised when an attempt is made to apply a "signoff request" # label (like ADVREQ, H1OPS, etc.) when a signoff of that type already # exists (example: an advocate signoff exists and ADVOK or ADVNO is # applied, but a user tries to apply 'ADVREQ') pass class Event(models.Model): objects = InheritanceManager() # Queries can return subclasses, if available. # ANALYSIS_TYPE_CHOICES = ( # ("LM", "LowMass"), # ("HM", "HighMass"), # ("GRB", "GRB"), # ("RD", "Ringdown"), # ("OM", "Omega"), # ("Q", "Q"), # ("X", "X"), # ("CWB", "CWB"), # ("MBTA", "MBTAOnline"), # ("HWINJ", "HardwareInjection"), # ) DEFAULT_EVENT_NEIGHBORHOOD = (-5,5) submitter = models.ForeignKey(UserModel) created = models.DateTimeField(auto_now_add=True) group = models.ForeignKey(Group) #uid = models.CharField(max_length=20, default="") # XXX deprecated. should be removed. #analysisType = models.CharField(max_length=20, choices=ANALYSIS_TYPE_CHOICES) # Events aren't required to be part of a superevent. If the superevent is # deleted, don't delete the event; just set this FK to null. superevent = models.ForeignKey('superevents.Superevent', null=True, related_name='events', on_delete=models.SET_NULL) # Note: a default value is needed only during the schema migration # that creates this column. After that, we can safely remove it. # The presence or absence of the default value has no effect on the DB # tables, so removing it does not necessitate a migration. pipeline = models.ForeignKey(Pipeline) search = models.ForeignKey(Search, null=True) # from coinc_event instruments = models.CharField(max_length=20, default="") nevents = models.PositiveIntegerField(null=True) far = models.FloatField(null=True) likelihood = models.FloatField(null=True) # NOT from coinc_event, but so, so common. # Note that the semantics for this is different depending # on search type, so in some sense, querying on this may # be considered, umm, wrong? But it is a starting point. #gpstime = models.PositiveIntegerField(null=True) gpstime = models.DecimalField(max_digits=16, decimal_places=6, null=True) labels = models.ManyToManyField(Label, through="Labelling") # This field will store a JSON-serialized list of permissions, of the # form <group name>_can_<permission codename> # This obviously duplicates information that is already in the database # in the form of GroupObjectPermission objects. Such duplication is # normally a bad thing, as it can lead to divergence. But we're going # to try really hard to avoid that. And it may help speed up the # searches quite considerably. perms = models.TextField(null=True) # Boolean which determines whether the event was submitted by an offline # analysis (True) or an online/low-latency analysis (False). Because this # is being implemented during a run (O2), we use a default value of False # so as to ensure backwards-compatibility; i.e., all events treated as # "online" by default. offline = models.BooleanField(default=False) class Meta: ordering = ["-id"] @property def graceid(self): if self.group.name == "Test": return "T%04d" % self.id elif str(self.search) == str("MDC"): return "M%04d" % self.id elif self.pipeline.name == "HardwareInjection": return "H%04d" % self.id elif self.group.name == "External": return "E%04d" % self.id return "G%04d" % self.id def weburl(self): # XXX Not good. But then, it never was. return reverse('file_list', args=[self.graceid]) @property def datadir(self): # Create a file-like object which is the SHA-1 hexdigest of the Event's primary key hdf = StringIO(sha1(str(self.id)).hexdigest()) # Build up the nodes of the directory structure nodes = [hdf.read(i) for i in settings.GRACEDB_DIR_DIGITS] # Read whatever is left over. This is the 'leaf' directory. nodes.append(hdf.read()) return os.path.join(settings.GRACEDB_DATA_DIR, *nodes) def is_ns_candidate(self): # Used for notifications # Current condition: m2 < 3.0 M_sun # Ensure that we have the base event class event = self if hasattr(self, 'event_ptr'): event = self.event_ptr # Check for single inspirals if event.singleinspiral_set.exists(): si = event.singleinspiral_set.first() if (si.mass2 > 0 and si.mass2 < 3): return True return False def is_test(self): return self.group.name == 'Test' def is_mdc(self): return (self.search and self.search.name == 'MDC' and self.group.name != 'Test') def is_production(self): return not (self.is_test() or self.is_mdc()) def get_event_category(self): if self.is_test(): return 'Test' elif self.is_mdc(): return 'MDC' else: return 'Production' def ligoApproved(self): return self.approval_set.filter(approvingCollaboration='L').count() def virgoApproved(self): return self.approval_set.filter(approvingCollaboration='V').count() def reportingLatency(self): if self.gpstime: dt = self.created if not dt.tzinfo: dt = SERVER_TZ.localize(dt) dt = dt.astimezone(pytz.utc) posix_time = calendar.timegm(dt.timetuple()) gps_time = int(posixToGpsTime(posix_time)) return gps_time - self.gpstime def neighbors(self, neighborhood=None): if not self.gpstime: return [] if self.group.name == 'Test': nearby = Event.objects.filter(group__name='Test') else: nearby = Event.objects.exclude(group__name='Test') delta1, delta2 = neighborhood or self.DEFAULT_EVENT_NEIGHBORHOOD nearby = nearby.filter(gpstime__range=(self.gpstime+delta1, self.gpstime+delta2)) nearby = nearby.exclude(id=self.id) nearby = nearby.distinct() nearby = nearby.order_by('gpstime') return nearby @classmethod def getTypeLabel(cls, code): for key, label in cls.ANALYSIS_TYPE_CHOICES: if (key == code) or (code == label): return label raise KeyError("Unknown analysis type code: %s" % code) @classmethod def getByGraceid(cls, id): try: e = cls.objects.filter(id=int(id[1:])).select_subclasses()[0] except IndexError: raise cls.DoesNotExist("Event matching query does not exist") if (id[0] == "T") and (e.group.name == "Test"): return e if (id[0] == "H") and (e.pipeline.name == "HardwareInjection"): return e if (id[0] == "E") and (e.group.name == "External"): return e if (id[0] == "M") and (e.search and e.search.name == "MDC"): return e if (id[0] == "G"): return e raise cls.DoesNotExist("Event matching query does not exist") def __unicode__(self): return self.graceid # Return a list of distinct tags associated with the log messages of this # event. def getAvailableTags(self): tagset_list = [log.tags.all() for log in self.eventlog_set.all()] taglist = [] for tagset in tagset_list: for tag in tagset: taglist.append(tag) # Eliminate duplicates taglist = list(set(taglist)) # Ordering should match the ordering of blessed tags list. # XXX Possibly, there are smarter ways of doing this. if settings.BLESSED_TAGS: availableTags = [] for blessed_tag in settings.BLESSED_TAGS: for tag in taglist: if tag.name == blessed_tag: taglist.remove(tag) availableTags.append(tag) # Append any remaining tags at the end of the list if len(taglist)>0: for tag in taglist: availableTags.append(tag) else: availableTags = taglist return availableTags def getLogsForTag(self,tagname): loglist = [] for log in self.eventlog_set.all(): for tag in log.tags.all(): if tag.name==tagname: loglist.append(log) return loglist def get_subclass(self): """ For a base Event object, returns subclass (if any); should be only one subclass for each event. For a subclass, returns self. """ if not (self.__class__ == Event): return self subclass_fields = [f.name for f in self.__class__._meta.get_fields() if (f.one_to_one and f.auto_created and not f.concrete and self.__class__ in f.related_model.__bases__)] for f in subclass_fields: if hasattr(self, f): return getattr(self, f) return None def get_subclass_or_self(self): """ 'Safe' version of get_subclass """ subclass = self.get_subclass() if subclass is None: return self return subclass # A method to update the permissions according to the permission objects in # the database. def refresh_perms(self): # Content type is 'Event', obvs. content_type = ContentType.objects.get(app_label='events', model='event') # Get all of the GroupObjectPermissions for this object id and content type group_object_perms = GroupObjectPermission.objects.filter(object_pk=self.id, content_type=content_type) perm_strings = [] # Make a list of permission strings for obj in group_object_perms: perm_strings.append('%s_can_%s' % (obj.group.name, obj.permission.codename.split('_')[0])) # Serialize as json. self.perms = json.dumps(perm_strings) # Fool! Save yourself! self.save() def delete(self, purge=False, *args, **kwargs): """ Optionally override the delete method for Event models. By default, deleting an Event deletes corresponding subclasses (GrbEvent, CoincInspiralEvent, etc.) and EventLogs, EMObservations, etc., but does not remove the data directory or the GroupObjectPermissions corresponding to the Event or its subclasses. Usage: event.delete() will do the basic delete, just as before event.delete(purge=True) will also remove the data directory and GroupObjectPermissions for the Event and its subclasses """ if purge: # Delete data directory datadir = self.datadir if os.path.isdir(datadir): shutil.rmtree(datadir) # Delete any GroupObjectPermissions for this event and its # subclasses (MultiBurstEvent, CoincInspiralEvent, etc.) cls = self.__class__ subclasses = [f.related_model for f in cls._meta.get_fields() if (f.one_to_one and f.auto_created and not f.concrete and cls in f.related_model.__bases__)] for m in subclasses + [cls]: ctype = ContentType.objects.get_for_model(m) gops = GroupObjectPermission.objects.filter(object_pk=self.id, content_type=ctype) gops.delete() # Call base class delete super(Event, self).delete(*args, **kwargs) class EventLog(CleanSaveModel, LogBase, AutoIncrementModel): """ Log message object attached to an Event. Uses the AutoIncrementModel to handle log enumeration on a per-Event basis. """ AUTO_FIELD = 'N' AUTO_CONSTRAINTS = ('event',) # Extra fields event = models.ForeignKey(Event, null=False) tags = models.ManyToManyField('Tag', related_name='event_logs') class Meta(LogBase.Meta): unique_together = (('event', 'N'),) def fileurl(self): if self.filename: return reverse('file-download', args=[self.event.graceid, self.versioned_filename]) else: return None class EMGroup(models.Model): name = models.CharField(max_length=50, unique=True) # XXX what else? Possibly the liasons. These can be populated # automatically from the gw-astronomy COManage-provisioned LDAP. # Let's leave this out for now. The submitter will be stored in # the EMBB log record, and that should be enough for audit/blame # purposes. #liasons = models.ManyToManyField(UserModel) def __unicode__(self): return self.name class EMObservationBase(models.Model): """Abstract base class for EM follow-up observation records""" class Meta: abstract = True ordering = ['-created', '-N'] N = models.IntegerField(null=False, editable=False) created = models.DateTimeField(auto_now_add=True) submitter = models.ForeignKey(UserModel, null=False, related_name='%(app_label)s_%(class)s_set') # The MOU group responsible group = models.ForeignKey(EMGroup, null=False, related_name='%(app_label)s_%(class)s_set') # The following fields should be calculated from the footprint info # provided by the user. These fields are just for convenience and # fast searching # The center of the bounding box of the rectangular footprints ra,dec # in J2000 in decimal degrees ra = models.FloatField(null=True, blank=True) dec = models.FloatField(null=True, blank=True) # The width and height (RA range and Dec range) in decimal degrees raWidth = models.FloatField(null=True, blank=True) decWidth = models.FloatField(null=True, blank=True) comment = models.TextField(blank=True) def calculateCoveringRegion(self, footprints=None): # Implement most of the logic in the abstract class' method # without needing to specify the footprints field if not footprints: return ramin = 360.0 ramax = 0.0 decmin = 90.0 decmax = -90.0 for f in footprints: # evaluate bounding box w = float(f.raWidth)/2 if f.ra-w < ramin: ramin = f.ra-w if f.ra+w > ramax: ramax = f.ra+w w = float(f.decWidth)/2 if f.dec-w < decmin: decmin = f.dec-w if f.dec+w > decmax: decmax = f.dec+w # Make sure the min/max ra and dec are within bounds: ramin = max(0.0, ramin) ramax = min(360.0, ramax) decmin = max(-90.0, decmin) decmax = min(90.0, decmax) # Calculate sky rectangle bounds self.ra = (ramin + ramax)/2 self.dec = (decmin + decmax)/2 self.raWidth = ramax-ramin self.decWidth = decmax-decmin class EMObservation(EMObservationBase, AutoIncrementModel): """EMObservation class for events""" AUTO_FIELD = 'N' AUTO_CONSTRAINTS = ('event',) event = models.ForeignKey(Event, null=False, on_delete=models.CASCADE) class Meta(EMObservationBase.Meta): unique_together = (('event', 'N'),) def __unicode__(self): return "{event_id} | {group} | {N}".format( event_id=self.event.graceid, group=self.group.name, N=self.N) def calculateCoveringRegion(self): footprints = self.emfootprint_set.all() super(EMObservation, self).calculateCoveringRegion(footprints) class EMFootprintBase(models.Model): """ Abstract base class for EM footprints: Each EMObservation can have many footprints underneath. None of the fields are optional here. """ N = models.IntegerField(null=False, editable=False) # The center of the rectangular footprint, right ascension and declination # in J2000 in decimal degrees ra = models.FloatField(null=False, blank=False) dec = models.FloatField(null=False, blank=False) # The width and height (RA range and Dec range) in decimal degrees raWidth = models.FloatField(null=False, blank=False) decWidth = models.FloatField(null=False, blank=False) # The start time of the observation for this footprint start_time = models.DateTimeField(null=False, blank=False) # The exposure time in seconds for this footprint exposure_time = models.PositiveIntegerField(null=False, blank=False) class Meta: abstract = True ordering = ['-N'] class EMFootprint(EMFootprintBase, AutoIncrementModel): """EMFootprint class for event EMObservations""" # For AutoIncrementModel save AUTO_FIELD = 'N' AUTO_CONSTRAINTS = ('observation',) observation = models.ForeignKey(EMObservation, null=False, on_delete=models.CASCADE) class Meta(EMFootprintBase.Meta): unique_together = (('observation', 'N'),) class Labelling(m2mThroughBase): """ Model which provides the "through" relationship between Events and Labels. """ event = models.ForeignKey(Event) label = models.ForeignKey(Label) def __unicode__(self): return "{graceid} | {label}".format(graceid=self.event.graceid, label=self.label.name) # XXX Deprecated? Is this used *anywhere*? # Appears to only be used in models.py. Here and Event class as approval_set class Approval(models.Model): COLLABORATION_CHOICES = ( ('L','LIGO'), ('V','Virgo'), ) approver = models.ForeignKey(UserModel) created = models.DateTimeField(auto_now_add=True) approvedEvent = models.ForeignKey(Event, null=False) approvingCollaboration = models.CharField(max_length=1, choices=COLLABORATION_CHOICES) ## Analysis Specific Attributes. class GrbEvent(Event): ivorn = models.CharField(max_length=200, null=True) author_ivorn = models.CharField(max_length=200, null=True) author_shortname = models.CharField(max_length=200, null=True) observatory_location_id = models.CharField(max_length=200, null=True) coord_system = models.CharField(max_length=200, null=True) ra = models.FloatField(null=True) dec = models.FloatField(null=True) error_radius = models.FloatField(null=True) how_description = models.CharField(max_length=200, null=True) how_reference_url = models.URLField(null=True) trigger_duration = models.FloatField(null=True) t90 = models.FloatField(null=True) designation = models.CharField(max_length=20, null=True) redshift = models.FloatField(null=True) trigger_id = models.CharField(max_length=25, null=True) class CoincInspiralEvent(Event): ifos = models.CharField(max_length=20, default="") end_time = models.PositiveIntegerField(null=True) end_time_ns = models.PositiveIntegerField(null=True) mass = models.FloatField(null=True) mchirp = models.FloatField(null=True) minimum_duration = models.FloatField(null=True) snr = models.FloatField(null=True) false_alarm_rate = models.FloatField(null=True) combined_far = models.FloatField(null=True) class MultiBurstEvent(Event): ifos = models.CharField(max_length=20, default="") start_time = models.PositiveIntegerField(null=True) start_time_ns = models.PositiveIntegerField(null=True) duration = models.FloatField(null=True) peak_time = models.PositiveIntegerField(null=True) peak_time_ns = models.PositiveIntegerField(null=True) central_freq = models.FloatField(null=True) bandwidth = models.FloatField(null=True) amplitude = models.FloatField(null=True) snr = models.FloatField(null=True) confidence = models.FloatField(null=True) false_alarm_rate = models.FloatField(null=True) ligo_axis_ra = models.FloatField(null=True) ligo_axis_dec = models.FloatField(null=True) ligo_angle = models.FloatField(null=True) ligo_angle_sig = models.FloatField(null=True) single_ifo_times = models.CharField(max_length=255, default="") class LalInferenceBurstEvent(Event): bci = models.FloatField(null=True) quality_mean = models.FloatField(null=True) quality_median = models.FloatField(null=True) bsn = models.FloatField(null=True) omicron_snr_network = models.FloatField(null=True) omicron_snr_H1 = models.FloatField(null=True) omicron_snr_L1 = models.FloatField(null=True) omicron_snr_V1 = models.FloatField(null=True) hrss_mean = models.FloatField(null=True) hrss_median = models.FloatField(null=True) frequency_mean = models.FloatField(null=True) frequency_median = models.FloatField(null=True) class SingleInspiral(models.Model): event = models.ForeignKey(Event, null=False) ifo = models.CharField(max_length=20, null=True) search = models.CharField(max_length=20, null=True) channel = models.CharField(max_length=100, blank=True) end_time = models.IntegerField(null=True) end_time_ns = models.IntegerField(null=True) end_time_gmst = models.FloatField(null=True) impulse_time = models.IntegerField(null=True) impulse_time_ns = models.IntegerField(null=True) template_duration = models.FloatField(null=True) event_duration = models.FloatField(null=True) amplitude = models.FloatField(null=True) eff_distance = models.FloatField(null=True) coa_phase = models.FloatField(null=True) mass1 = models.FloatField(null=True) mass2 = models.FloatField(null=True) mchirp = models.FloatField(null=True) mtotal = models.FloatField(null=True) eta = models.FloatField(null=True) kappa = models.FloatField(null=True) chi = models.FloatField(null=True) tau0 = models.FloatField(null=True) tau2 = models.FloatField(null=True) tau3 = models.FloatField(null=True) tau4 = models.FloatField(null=True) tau5 = models.FloatField(null=True) ttotal = models.FloatField(null=True) psi0 = models.FloatField(null=True) psi3 = models.FloatField(null=True) alpha = models.FloatField(null=True) alpha1 = models.FloatField(null=True) alpha2 = models.FloatField(null=True) alpha3 = models.FloatField(null=True) alpha4 = models.FloatField(null=True) alpha5 = models.FloatField(null=True) alpha6 = models.FloatField(null=True) beta = models.FloatField(null=True) f_final = models.FloatField(null=True) snr = models.FloatField(null=True) chisq = models.FloatField(null=True) chisq_dof = models.IntegerField(null=True) bank_chisq = models.FloatField(null=True) bank_chisq_dof = models.IntegerField(null=True) cont_chisq = models.FloatField(null=True) cont_chisq_dof = models.IntegerField(null=True) sigmasq = models.FloatField(null=True) rsqveto_duration = models.FloatField(null=True) Gamma0 = models.FloatField(null=True) Gamma1 = models.FloatField(null=True) Gamma2 = models.FloatField(null=True) Gamma3 = models.FloatField(null=True) Gamma4 = models.FloatField(null=True) Gamma5 = models.FloatField(null=True) Gamma6 = models.FloatField(null=True) Gamma7 = models.FloatField(null=True) Gamma8 = models.FloatField(null=True) Gamma9 = models.FloatField(null=True) spin1x = models.FloatField(null=True) spin1y = models.FloatField(null=True) spin1z = models.FloatField(null=True) spin2x = models.FloatField(null=True) spin2y = models.FloatField(null=True) spin2z = models.FloatField(null=True) def end_time_full(self): return LIGOTimeGPS(self.end_time, self.end_time_ns) def impulse_time_full(self): return LIGOTimeGPS(self.impulse_time, self.impulse_time_ns) @classmethod def create_events_from_ligolw_table(cls, table, event): """For an Event, given a table (loaded by ligolw.utils.load_filename or similar) create SingleEvent tables for the event""" created_events = [] #log.debug("Single/create from table/fields: " + str(field_names)) for row in table: e = cls(event=event) #log.debug("Single/creating event") for f in [cls._meta.get_field(f) for f in cls.field_names()]: value = getattr(row, f.attname, f.default) # Awful kludge for handling nan for eff_distance try: if (f.attname == 'eff_distance' and isinstance(value, numbers.Number) and isnan(value)): value = None except Exception as e: pass # Only set value of class instance member if # value is not None or if field is nullable. # Otherwise we could overwrite non-nullable fields # which have default values with None. if value is not None or f.null: #log.debug("Setting column '%s' with value '%s'" % (f.attname, value)) setattr(e, f.attname, value) e.save() created_events.append(e) return created_events @classmethod def update_event(cls, event, datafile=None): """Given an Event (and optional location of coinc.xml) update SingleInspiral data""" # XXX Need a better way to find original data. if datafile is None: datafile = os.path.join(event.datadir, 'coinc.xml') try: xmldoc = glue.ligolw.utils.load_filename(datafile, contenthandler=LIGOLWContentHandler) except IOError: return None # Extract Single Inspiral Information s_inspiral_tables = glue.ligolw.lsctables.SnglInspiralTable.get_table(xmldoc) # Concatentate the tables' rows into a single table table = sum(s_inspiral_tables, []) event.singleinspiral_set.all().delete() return cls.create_events_from_ligolw_table(table, event) @classmethod def field_names(cls): try: return cls._field_names except AttributeError: pass model_field_names = set([ x.name for x in cls._meta.get_fields(include_parents=False) ]) ligolw_field_names = set( glue.ligolw.lsctables.SnglInspiralTable.validcolumns.keys()) cls._field_names = model_field_names.intersection(ligolw_field_names) return cls._field_names # Event subclass for injections class SimInspiralEvent(Event): mass1 = models.FloatField(null=True) mass2 = models.FloatField(null=True) eta = models.FloatField(null=True) amp_order = models.IntegerField(null=True) coa_phase = models.FloatField(null=True) mchirp = models.FloatField(null=True) spin1y = models.FloatField(null=True) spin1x = models.FloatField(null=True) spin1z = models.FloatField(null=True) spin2x = models.FloatField(null=True) spin2y = models.FloatField(null=True) spin2z = models.FloatField(null=True) geocent_end_time = models.IntegerField(null=True) geocent_end_time_ns = models.IntegerField(null=True) end_time_gmst = models.FloatField(null=True) f_lower = models.FloatField(null=True) f_final = models.FloatField(null=True) distance = models.FloatField(null=True) latitude = models.FloatField(null=True) longitude = models.FloatField(null=True) polarization = models.FloatField(null=True) inclination = models.FloatField(null=True) theta0 = models.FloatField(null=True) phi0 = models.FloatField(null=True) waveform = models.CharField(max_length=50, blank=True, default="") numrel_mode_min = models.IntegerField(null=True) numrel_mode_max = models.IntegerField(null=True) numrel_data = models.CharField(max_length=50, blank=True, default="") source = models.CharField(max_length=50, blank=True, default="") taper = models.CharField(max_length=50, blank=True, default="") bandpass = models.IntegerField(null=True) alpha = models.FloatField(null=True) beta = models.FloatField(null=True) psi0 = models.FloatField(null=True) psi3 = models.FloatField(null=True) alpha1 = models.FloatField(null=True) alpha2 = models.FloatField(null=True) alpha3 = models.FloatField(null=True) alpha4 = models.FloatField(null=True) alpha5 = models.FloatField(null=True) alpha6 = models.FloatField(null=True) g_end_time = models.IntegerField(null=True) g_end_time_ns = models.IntegerField(null=True) h_end_time = models.IntegerField(null=True) h_end_time_ns = models.IntegerField(null=True) l_end_time = models.IntegerField(null=True) l_end_time_ns = models.IntegerField(null=True) t_end_time = models.IntegerField(null=True) t_end_time_ns = models.IntegerField(null=True) v_end_time = models.IntegerField(null=True) v_end_time_ns = models.IntegerField(null=True) eff_dist_g = models.FloatField(null=True) eff_dist_h = models.FloatField(null=True) eff_dist_l = models.FloatField(null=True) eff_dist_t = models.FloatField(null=True) eff_dist_v = models.FloatField(null=True) # Additional desired attributes that are not in the SimInspiral table source_channel = models.CharField(max_length=50, blank=True, default="", null=True) destination_channel = models.CharField(max_length=50, blank=True, default="", null=True) @classmethod def field_names(cls): try: return cls._field_names except AttributeError: pass # We only care about the model field names in this particular case. cls._field_names = [ x.name for x in cls._meta.get_fields(include_parents=False) ] return cls._field_names # Tags (user-defined log message attributes) class Tag(CleanSaveModel): """ Model for tags attached to EventLogs. We don't use an explicit through model to track relationship creators and time of relationship creation since we generally create a log message whenever another log is tagged. Not sure that it's good to make the assumption that this will always be done. But is it really important to track those things? Doesn't seem like it. """ name = models.CharField(max_length=100, null=False, blank=False, unique=True, validators=[ models.fields.validators.RegexValidator( regex=r'^[0-9a-zA-Z_\-]*$', message="Tag names can only include [0-9a-zA-z_-]", code="invalid_tag_name", ) ]) displayName = models.CharField(max_length=200, null=True, blank=True) def __unicode__(self): return self.displayName if self.displayName else self.name class VOEventBase(models.Model): """Abstract base model for VOEvents""" class Meta: abstract = True ordering = ['-created', '-N'] # VOEvent type choices VOEVENT_TYPE_PRELIMINARY = 'PR' VOEVENT_TYPE_INITIAL = 'IN' VOEVENT_TYPE_UPDATE = 'UP' VOEVENT_TYPE_RETRACTION = 'RE' VOEVENT_TYPE_CHOICES = ( (VOEVENT_TYPE_PRELIMINARY, 'preliminary'), (VOEVENT_TYPE_INITIAL, 'initial'), (VOEVENT_TYPE_UPDATE, 'update'), (VOEVENT_TYPE_RETRACTION, 'retraction'), ) # Fields created = models.DateTimeField(auto_now_add=True) issuer = models.ForeignKey(UserModel, null=False, related_name='%(app_label)s_%(class)s_set') ivorn = models.CharField(max_length=200, default="", blank=True) filename = models.CharField(max_length=100, default="", blank=True) file_version = models.IntegerField(null=True, default=None, blank=True) N = models.IntegerField(null=False, editable=False) voevent_type = models.CharField(max_length=2, choices=VOEVENT_TYPE_CHOICES) def fileurl(self): # Override this method on derived classes return NotImplemented class VOEvent(VOEventBase, AutoIncrementModel): """VOEvent class for events""" AUTO_FIELD = 'N' AUTO_CONSTRAINTS = ('event',) event = models.ForeignKey(Event, null=False, on_delete=models.CASCADE) class Meta(VOEventBase.Meta): unique_together = (('event', 'N'),) def fileurl(self): if self.filename: actual_filename = self.filename if self.file_version >= 0: actual_filename += ',%d' % self.file_version return reverse('file-download', args=[self.event.graceid, actual_filename]) else: return None class SignoffBase(models.Model): """Abstract base model for operator and advocate signoffs""" # Instrument choices INSTRUMENT_H1 = 'H1' INSTRUMENT_L1 = 'L1' INSTRUMENT_V1 = 'V1' INSTRUMENT_CHOICES = ( (INSTRUMENT_H1, 'LHO'), (INSTRUMENT_L1, 'LLO'), (INSTRUMENT_V1, 'Virgo'), ) # Operator status choices OPERATOR_STATUS_OK = 'OK' OPERATOR_STATUS_NOTOK = 'NO' OPERATOR_STATUS_CHOICES = ( (OPERATOR_STATUS_OK, 'OKAY'), (OPERATOR_STATUS_NOTOK, 'NOT OKAY'), ) # Signoff type choices SIGNOFF_TYPE_OPERATOR = 'OP' SIGNOFF_TYPE_ADVOCATE = 'ADV' SIGNOFF_TYPE_CHOICES = ( (SIGNOFF_TYPE_OPERATOR, 'operator'), (SIGNOFF_TYPE_ADVOCATE, 'advocate'), ) # Field definitions submitter = models.ForeignKey(UserModel, related_name= '%(app_label)s_%(class)s_set') comment = models.TextField(blank=True) instrument = models.CharField(max_length=2, blank=True, choices=INSTRUMENT_CHOICES) status = models.CharField(max_length=2, blank=False, choices=OPERATOR_STATUS_CHOICES) signoff_type = models.CharField(max_length=3, blank=False, choices=SIGNOFF_TYPE_CHOICES) # Timezones for instruments (this should really be handled separately # by an instrument class) instrument_time_zones = { INSTRUMENT_H1: 'America/Los_Angeles', INSTRUMENT_L1: 'America/Chicago', INSTRUMENT_V1: 'Europe/Rome', } class Meta: abstract = True def clean(self, *args, **kwargs): """Custom clean method for signoffs""" # Make sure instrument is non-blank if this is an operator signoff if (self.signoff_type == self.SIGNOFF_TYPE_OPERATOR and not self.instrument): raise ValidationError({'instrument': _('Instrument must be specified for operator signoff')}) super(SignoffBase, self).clean(*args, **kwargs) def get_req_label_name(self): if self.signoff_type == 'OP': return self.instrument + 'OPS' elif self.signoff_type == 'ADV': return 'ADVREQ' def get_status_label_name(self): if self.signoff_type == 'OP': return self.instrument + self.status elif self.signoff_type == 'ADV': return 'ADV' + self.status @property def opposite_status(self): if self.status == 'OK': return 'NO' elif self.status == 'NO': return 'OK' def get_opposite_status_label_name(self): if self.signoff_type == 'OP': return self.instrument + self.opposite_status elif self.signoff_type == 'ADV': return 'ADV' + self.opposite_status class Signoff(SignoffBase): """Class for Event signoffs""" event = models.ForeignKey(Event) class Meta: unique_together = ('event', 'instrument') def __unicode__(self): return "%s | %s | %s" % (self.event.graceid, self.instrument, self.status) EMSPECTRUM = ( ('em.gamma', 'Gamma rays part of the spectrum'), ('em.gamma.soft', 'Soft gamma ray (120 - 500 keV)'), ('em.gamma.hard', 'Hard gamma ray (>500 keV)'), ('em.X-ray', 'X-ray part of the spectrum'), ('em.X-ray.soft', 'Soft X-ray (0.12 - 2 keV)'), ('em.X-ray.medium', 'Medium X-ray (2 - 12 keV)'), ('em.X-ray.hard', 'Hard X-ray (12 - 120 keV)'), ('em.UV', 'Ultraviolet part of the spectrum'), ('em.UV.10-50nm', 'Ultraviolet between 10 and 50 nm'), ('em.UV.50-100nm', 'Ultraviolet between 50 and 100 nm'), ('em.UV.100-200nm', 'Ultraviolet between 100 and 200 nm'), ('em.UV.200-300nm', 'Ultraviolet between 200 and 300 nm'), ('em.UV.FUV', 'Far-Infrared, 30-100 microns'), ('em.opt', 'Optical part of the spectrum'), ('em.opt.U', 'Optical band between 300 and 400 nm'), ('em.opt.B', 'Optical band between 400 and 500 nm'), ('em.opt.V', 'Optical band between 500 and 600 nm'), ('em.opt.R', 'Optical band between 600 and 750 nm'), ('em.opt.I', 'Optical band between 750 and 1000 nm'), ('em.IR', 'Infrared part of the spectrum'), ('em.IR.NIR', 'Near-Infrared, 1-5 microns'), ('em.IR.J', 'Infrared between 1.0 and 1.5 micron'), ('em.IR.H', 'Infrared between 1.5 and 2 micron'), ('em.IR.K', 'Infrared between 2 and 3 micron'), ('em.IR.MIR', 'Medium-Infrared, 5-30 microns'), ('em.IR.3-4um', 'Infrared between 3 and 4 micron'), ('em.IR.4-8um', 'Infrared between 4 and 8 micron'), ('em.IR.8-15um', 'Infrared between 8 and 15 micron'), ('em.IR.15-30um', 'Infrared between 15 and 30 micron'), ('em.IR.30-60um', 'Infrared between 30 and 60 micron'), ('em.IR.60-100um', 'Infrared between 60 and 100 micron'), ('em.IR.FIR', 'Far-Infrared, 30-100 microns'), ('em.mm', 'Millimetric part of the spectrum'), ('em.mm.1500-3000GHz', 'Millimetric between 1500 and 3000 GHz'), ('em.mm.750-1500GHz', 'Millimetric between 750 and 1500 GHz'), ('em.mm.400-750GHz', 'Millimetric between 400 and 750 GHz'), ('em.mm.200-400GHz', 'Millimetric between 200 and 400 GHz'), ('em.mm.100-200GHz', 'Millimetric between 100 and 200 GHz'), ('em.mm.50-100GHz', 'Millimetric between 50 and 100 GHz'), ('em.mm.30-50GHz', 'Millimetric between 30 and 50 GHz'), ('em.radio', 'Radio part of the spectrum'), ('em.radio.12-30GHz', 'Radio between 12 and 30 GHz'), ('em.radio.6-12GHz', 'Radio between 6 and 12 GHz'), ('em.radio.3-6GHz', 'Radio between 3 and 6 GHz'), ('em.radio.1500-3000MHz','Radio between 1500 and 3000 MHz'), ('em.radio.750-1500MHz','Radio between 750 and 1500 MHz'), ('em.radio.400-750MHz', 'Radio between 400 and 750 MHz'), ('em.radio.200-400MHz', 'Radio between 200 and 400 MHz'), ('em.radio.100-200MHz', 'Radio between 100 and 200 MHz'), ('em.radio.20-100MHz', 'Radio between 20 and 100 MHz'), ) # TP (2 Apr 2018): pretty sure this class is deprecated - most recent # production use is T137114 = April 2015. class EMBBEventLog(AutoIncrementModel): """EMBB EventLog: A multi-purpose annotation for EM followup. A rectangle on the sky, equatorially aligned, that has or will be imaged that is related to an event""" class Meta: ordering = ['-created', '-N'] unique_together = ("event","N") def __unicode__(self): return "%s-%s-%d" % (self.event.graceid, self.group.name, self.N) # A counter for Eels associated with a given event. This is # important for addressibility. N = models.IntegerField(null=False) # The time at which this Eel was created. Important for event auditing. created = models.DateTimeField(auto_now_add=True) # The gracedb event that this Eel relates to event = models.ForeignKey(Event) # The responsible author of this communication submitter = models.ForeignKey(UserModel) # from a table of people # The MOU group responsible group = models.ForeignKey(EMGroup) # from a table of facilities # The instrument used or intended for the imaging implied by this footprint instrument = models.CharField(max_length=200, blank=True) # Facility-local identifier for this footprint footprintID= models.TextField(blank=True) # Now the global ID is a concatenation: facilityName#footprintID # the EM waveband used for the imaging as below waveband = models.CharField(max_length=25, choices=EMSPECTRUM) # The center of the bounding box of the rectangular footprints, right ascension and declination # in J2000 in decimal degrees ra = models.FloatField(null=True) dec = models.FloatField(null=True) # The width and height (RA range and Dec range) in decimal degrees of each image raWidth = models.FloatField(null=True) decWidth = models.FloatField(null=True) # The GPS time of the middle of the bounding box of the imaging time gpstime = models.PositiveIntegerField(null=True) # The duration of each image in seconds duration = models.PositiveIntegerField(null=True) # The lists of RA and Dec of the centers of the images raList = models.TextField(blank=True) decList = models.TextField(blank=True) # The width and height of each individual image raWidthList = models.TextField(blank=True) decWidthList = models.TextField(blank=True) # The list of GPS times of the images gpstimeList = models.TextField(blank=True) # The duration of each individual image durationList = models.TextField(blank=True) # Event Log status EEL_STATUS_CHOICES = (('FO','FOOTPRINT'), ('SO','SOURCE'), ('CO','COMMENT'), ('CI','CIRCULAR')) eel_status = models.CharField(max_length=2, choices=EEL_STATUS_CHOICES) # Observation status. If OBSERVATION, then there is a good chance of good image OBS_STATUS_CHOICES = (('NA', 'NOT APPLICABLE'), ('OB','OBSERVATION'), ('TE','TEST'), ('PR','PREDICTION')) obs_status = models.CharField(max_length=2, choices=OBS_STATUS_CHOICES) # This field is natural language for human comment = models.TextField(blank=True) # This field is formal struct by a syntax TBD # for example {"phot.mag.limit": 22.3} extra_info_dict = models.TextField(blank=True) # For AutoIncrementModel save AUTO_FIELD = 'N' AUTO_CONSTRAINTS = ('event',) # Validates the input and builds bounding box in RA/Dec/GPS def validateMakeRects(self): # get all the list based position and times and their widths raRealList = [] rawRealList = [] # add a [ and ] to convert the input csv list to a json parsable text if self.raList: raRealList = json.loads('['+self.raList+']') if self.raWidthList: rawRealList = json.loads('['+self.raWidthList+']') if self.decList: decRealList = json.loads('['+self.decList+']') if self.decWidthList: decwRealList = json.loads('['+self.decWidthList+']') if self.gpstimeList: gpstimeRealList = json.loads('['+self.gpstimeList+']') if self.durationList: durationRealList = json.loads('['+self.durationList+']') # is there anything in the ra list? nList = len(raRealList) if nList > 0: if decRealList and len(decRealList) != nList: raise ValueError('RA and Dec lists are different lengths.') if gpstimeRealList and len(gpstimeRealList) != nList: raise ValueError('RA and GPS lists are different lengths.') # is there anything in the raWidth list? mList = len(rawRealList) if mList > 0: if decwRealList and len(decwRealList) != mList: raise ValueError('RAwidth and Decwidth lists are different lengths.') if durationRealList and len(durationRealList) != mList: raise ValueError('RAwidth and Duration lists are different lengths.') # There can be 1 width for the whole list, or one for each ra/dec/gps if mList != 1 and mList != nList: raise ValueError('Width and duration lists must be length 1 or same length as coordinate lists') else: mList = 0 ramin = 360.0 ramax = 0.0 decmin = 90.0 decmax = -90.0 gpsmin = 100000000000 gpsmax = 0 for i in range(nList): try: ra = float(raRealList[i]) except: raise ValueError('Cannot read RA list element %d of %s'%(i, self.raList)) try: dec = float(decRealList[i]) except: raise ValueError('Cannot read Dec list element %d of %s'%(i, self.decList)) try: gps = int(gpstimeRealList[i]) except: raise ValueError('Cannot read GPStime list element %d of %s'%(i, self.gpstimeList)) # the widths list can have 1 member to cover all, or one for each if mList==1: j=0 else : j=i try: w = float(rawRealList[j])/2 except: raise ValueError('Cannot read raWidth list element %d of %s'%(i, self.raWidthList)) # evaluate bounding box if ra-w < ramin: ramin = ra-w if ra+w > ramax: ramax = ra+w try: w = float(decwRealList[j])/2 except: raise ValueError('Cannot read raWidth list element %d of %s'%(i, self.decWidthList)) # evaluate bounding box if dec-w < decmin: decmin = dec-w if dec+w > decmax: decmax = dec+w try: w = int(durationRealList[j])/2 except: raise ValueError('Cannot read duration list element %d of %s'%(i, self.durationList)) # evaluate bounding box if gps-w < gpsmin: gpsmin = gps-w if gps+w > gpsmax: gpsmax = gps+w # Make sure the min/max ra and dec are within bounds: ramin = max(0.0, ramin) ramax = min(360.0, ramax) decmin = max(-90.0, decmin) decmax = min(90.0, decmax) if nList>0: self.ra = (ramin + ramax)/2 self.dec = (decmin + decmax)/2 self.gpstime = (gpsmin+gpsmax)/2 if mList>0: self.raWidth = ramax-ramin self.decWidth = decmax-decmin self.duration = gpsmax-gpsmin return True