Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Michael Williams
bilby
Commits
1ec6f496
Commit
1ec6f496
authored
Nov 14, 2022
by
Colm Talbot
Browse files
Merge remote-tracking branch 'origin/master' into prior-load-functions
parents
e194b45f
c65f9f1f
Changes
4
Hide whitespace changes
Inline
Side-by-side
bilby/gw/likelihood/base.py
View file @
1ec6f496
...
...
@@ -132,6 +132,7 @@ class GravitationalWaveTransient(Likelihood):
self
.
calibration_marginalization
=
calibration_marginalization
self
.
priors
=
priors
self
.
_check_set_duration_and_sampling_frequency_of_waveform_generator
()
self
.
_noise_log_likelihood_value
=
None
self
.
jitter_time
=
jitter_time
self
.
reference_frame
=
reference_frame
if
"geocent"
not
in
time_reference
:
...
...
@@ -342,7 +343,7 @@ class GravitationalWaveTransient(Likelihood):
else
:
self
.
_prior
=
None
def
noise_log_likelihood
(
self
):
def
_calculate_
noise_log_likelihood
(
self
):
log_l
=
0
for
interferometer
in
self
.
interferometers
:
mask
=
interferometer
.
frequency_mask
...
...
@@ -353,6 +354,12 @@ class GravitationalWaveTransient(Likelihood):
self
.
waveform_generator
.
duration
)
/
2
return
float
(
np
.
real
(
log_l
))
def
noise_log_likelihood
(
self
):
# only compute likelihood if called for the 1st time
if
self
.
_noise_log_likelihood_value
is
None
:
self
.
_noise_log_likelihood_value
=
self
.
_calculate_noise_log_likelihood
()
return
self
.
_noise_log_likelihood_value
def
log_likelihood_ratio
(
self
):
waveform_polarizations
=
\
self
.
waveform_generator
.
frequency_domain_strain
(
self
.
parameters
)
...
...
bilby/gw/likelihood/multiband.py
View file @
1ec6f496
...
...
@@ -8,6 +8,7 @@ from ...core.utils import (
logger
,
speed_of_light
,
solar_mass
,
radius_of_earth
,
gravitational_constant
,
round_up_to_power_of_two
)
from
..prior
import
CBCPriorDict
class
MBGravitationalWaveTransient
(
GravitationalWaveTransient
):
...
...
@@ -21,8 +22,9 @@ class MBGravitationalWaveTransient(GravitationalWaveTransient):
A list of `bilby.detector.Interferometer` instances - contains the detector data and power spectral densities
waveform_generator: `bilby.waveform_generator.WaveformGenerator`
An object which computes the frequency-domain strain of the signal, given some set of parameters
reference_chirp_mass: float
A reference chirp mass for determining the frequency banding
reference_chirp_mass: float, optional
A reference chirp mass for determining the frequency banding. This is set to prior minimum of chirp mass if
not specified. Hence a CBCPriorDict object needs to be passed to priors when this parameter is not specified.
highest_mode: int, optional
The maximum magnetic number of gravitational-wave moments. Default is 2
linear_interpolation: bool, optional
...
...
@@ -72,10 +74,11 @@ class MBGravitationalWaveTransient(GravitationalWaveTransient):
"""
def
__init__
(
self
,
interferometers
,
waveform_generator
,
reference_chirp_mass
,
highest_mode
=
2
,
linear_interpolation
=
True
,
accuracy_factor
=
5
,
time_offset
=
None
,
delta_f_end
=
None
,
maximum_banding_frequency
=
None
,
minimum_banding_duration
=
0.
,
distance_marginalization
=
False
,
phase_marginalization
=
False
,
priors
=
None
,
distance_marginalization_lookup_table
=
None
,
reference_frame
=
"sky"
,
time_reference
=
"geocenter"
self
,
interferometers
,
waveform_generator
,
reference_chirp_mass
=
None
,
highest_mode
=
2
,
linear_interpolation
=
True
,
accuracy_factor
=
5
,
time_offset
=
None
,
delta_f_end
=
None
,
maximum_banding_frequency
=
None
,
minimum_banding_duration
=
0.
,
distance_marginalization
=
False
,
phase_marginalization
=
False
,
priors
=
None
,
distance_marginalization_lookup_table
=
None
,
reference_frame
=
"sky"
,
time_reference
=
"geocenter"
):
super
(
MBGravitationalWaveTransient
,
self
).
__init__
(
interferometers
=
interferometers
,
waveform_generator
=
waveform_generator
,
priors
=
priors
,
...
...
@@ -108,7 +111,24 @@ class MBGravitationalWaveTransient(GravitationalWaveTransient):
if
isinstance
(
reference_chirp_mass
,
int
)
or
isinstance
(
reference_chirp_mass
,
float
):
self
.
_reference_chirp_mass
=
reference_chirp_mass
else
:
raise
TypeError
(
"reference_chirp_mass must be a number"
)
logger
.
info
(
"No int or float number has been passed to reference_chirp_mass. "
"Checking prior minimum of chirp mass ..."
)
if
not
isinstance
(
self
.
priors
,
CBCPriorDict
):
raise
TypeError
(
f
"priors:
{
self
.
priors
}
is not CBCPriorDict. Prior minimum of chirp mass can not be obtained."
)
self
.
_reference_chirp_mass
=
self
.
priors
.
minimum_chirp_mass
if
self
.
_reference_chirp_mass
is
None
:
raise
Exception
(
"Prior minimum of chirp mass can not be determined as priors does not contain necessary mass "
"parameters."
)
logger
.
info
(
"reference_chirp_mass is automatically set to prior minimum of chirp mass: "
f
"
{
self
.
_reference_chirp_mass
}
."
)
@
property
def
highest_mode
(
self
):
...
...
test/gw/likelihood_test.py
View file @
1ec6f496
...
...
@@ -2,7 +2,6 @@ import itertools
import
os
import
pytest
import
unittest
from
copy
import
deepcopy
from
itertools
import
product
from
parameterized
import
parameterized
...
...
@@ -1571,9 +1570,9 @@ class TestBBHLikelihoodSetUp(unittest.TestCase):
class
TestMBLikelihood
(
unittest
.
TestCase
):
def
setUp
(
self
):
duration
=
16
fmin
=
20.
sampling_frequency
=
2048.
self
.
duration
=
16
self
.
fmin
=
20.
self
.
sampling_frequency
=
2048.
self
.
test_parameters
=
dict
(
chirp_mass
=
6.0
,
mass_ratio
=
0.5
,
...
...
@@ -1592,18 +1591,18 @@ class TestMBLikelihood(unittest.TestCase):
dec
=-
1.2
)
# Network SNR is ~50
ifos
=
bilby
.
gw
.
detector
.
InterferometerList
([
"H1"
,
"L1"
,
"V1"
])
self
.
ifos
=
bilby
.
gw
.
detector
.
InterferometerList
([
"H1"
,
"L1"
,
"V1"
])
np
.
random
.
seed
(
170817
)
ifos
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
,
start_time
=
self
.
test_parameters
[
'geocent_time'
]
-
duration
+
2.
self
.
ifos
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
self
.
sampling_frequency
,
duration
=
self
.
duration
,
start_time
=
self
.
test_parameters
[
'geocent_time'
]
-
self
.
duration
+
2.
)
for
ifo
in
ifos
:
ifo
.
minimum_frequency
=
fmin
for
ifo
in
self
.
ifos
:
ifo
.
minimum_frequency
=
self
.
fmin
spline_calibration_nodes
=
10
self
.
calibration_parameters
=
{}
for
ifo
in
ifos
:
for
ifo
in
self
.
ifos
:
ifo
.
calibration_model
=
bilby
.
gw
.
calibration
.
CubicSpline
(
prefix
=
f
"recalib_
{
ifo
.
name
}
_"
,
minimum_frequency
=
ifo
.
minimum_frequency
,
...
...
@@ -1619,143 +1618,168 @@ class TestMBLikelihood(unittest.TestCase):
self
.
calibration_parameters
[
f
"recalib_
{
ifo
.
name
}
_phase_
{
i
}
"
]
=
\
np
.
random
.
normal
(
loc
=
0
,
scale
=
5
*
np
.
pi
/
180
)
priors
=
bilby
.
gw
.
prior
.
BBHPriorDict
()
priors
.
pop
(
"mass_1"
)
priors
.
pop
(
"mass_2"
)
priors
[
"chirp_mass"
]
=
bilby
.
core
.
prior
.
Uniform
(
5.5
,
6.5
)
priors
[
"mass_ratio"
]
=
bilby
.
core
.
prior
.
Uniform
(
0.125
,
1
)
priors
[
"geocent_time"
]
=
bilby
.
core
.
prior
.
Uniform
(
self
.
priors
=
bilby
.
gw
.
prior
.
BBHPriorDict
()
self
.
priors
.
pop
(
"mass_1"
)
self
.
priors
.
pop
(
"mass_2"
)
self
.
priors
[
"chirp_mass"
]
=
bilby
.
core
.
prior
.
Uniform
(
5.5
,
6.5
)
self
.
priors
[
"mass_ratio"
]
=
bilby
.
core
.
prior
.
Uniform
(
0.125
,
1
)
self
.
priors
[
"geocent_time"
]
=
bilby
.
core
.
prior
.
Uniform
(
self
.
test_parameters
[
'geocent_time'
]
-
0.1
,
self
.
test_parameters
[
'geocent_time'
]
+
0.1
)
approximant_22
=
"IMRPhenomD"
approximant_homs
=
"IMRPhenomHM"
non_mb_wfg_22
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
def
tearDown
(
self
):
del
(
self
.
ifos
,
self
.
priors
)
@
parameterized
.
expand
([
(
"IMRPhenomD"
,
True
,
2
,
False
,
1.5e-2
),
(
"IMRPhenomD"
,
True
,
2
,
True
,
1.5e-2
),
(
"IMRPhenomD"
,
False
,
2
,
False
,
5e-3
),
(
"IMRPhenomD"
,
False
,
2
,
True
,
6e-3
),
(
"IMRPhenomHM"
,
False
,
4
,
False
,
8e-4
),
(
"IMRPhenomHM"
,
False
,
4
,
True
,
1e-3
)
])
def
test_matches_original_likelihood
(
self
,
approximant
,
linear_interpolation
,
highest_mode
,
add_cal_errors
,
tolerance
):
"""
Check if multi-band likelihood values match original likelihood values
"""
wfg
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
lal_binary_black_hole
,
waveform_arguments
=
dict
(
reference_frequency
=
fmin
,
minimum_frequency
=
fmin
,
approximant
=
approximant_22
)
reference_frequency
=
self
.
fmin
,
approximant
=
approximant
)
)
mb_wfg_22
=
bilby
.
gw
.
waveform_generator
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
self
.
ifos
.
inject_signal
(
parameters
=
self
.
test_parameters
,
waveform_generator
=
wfg
)
wfg_mb
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
fmin
,
approximant
=
approximant_22
)
)
non_mb_wfg_homs
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
lal_binary_black_hole
,
waveform_arguments
=
dict
(
reference_frequency
=
fmin
,
minimum_frequency
=
fmin
,
approximant
=
approximant_homs
)
reference_frequency
=
self
.
fmin
,
approximant
=
approximant
)
)
mb_wfg_homs
=
bilby
.
gw
.
waveform_generator
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
fmin
,
approximant
=
approximant_homs
)
likelihood
=
bilby
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg
)
ifos_22
=
deepcopy
(
ifos
)
ifos_22
.
inject_signal
(
parameters
=
self
.
test_parameters
,
waveform_generator
=
non_mb_wfg_22
likelihood_mb
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_mb
,
reference_chirp_mass
=
self
.
test_parameters
[
'chirp_mass'
],
priors
=
self
.
priors
.
copy
(),
linear_interpolation
=
linear_interpolation
,
highest_mode
=
highest_mode
)
ifos_homs
=
deepcopy
(
ifos
)
ifos_homs
.
inject_signal
(
parameters
=
self
.
test_parameters
,
waveform_generator
=
non_mb_wfg_homs
likelihood
.
parameters
.
update
(
self
.
test_parameters
)
likelihood_mb
.
parameters
.
update
(
self
.
test_parameters
)
if
add_cal_errors
:
likelihood
.
parameters
.
update
(
self
.
calibration_parameters
)
likelihood_mb
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
assertLess
(
abs
(
likelihood
.
log_likelihood_ratio
()
-
likelihood_mb
.
log_likelihood_ratio
()),
tolerance
)
self
.
non_mb_22
=
bilby
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
ifos_22
,
waveform_generator
=
non_mb_wfg_22
)
self
.
non_mb_homs
=
bilby
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
ifos_homs
,
waveform_generator
=
non_mb_wfg_homs
def
test_large_accuracy_factor
(
self
):
"""
Check if larger accuracy factor increases the accuracy.
"""
approximant
=
"IMRPhenomD"
wfg
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
lal_binary_black_hole
,
waveform_arguments
=
dict
(
reference_frequency
=
self
.
fmin
,
approximant
=
approximant
)
)
self
.
ifos
.
inject_signal
(
parameters
=
self
.
test_parameters
,
waveform_generator
=
wfg
)
self
.
mb_22
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
ifos_22
,
waveform_generator
=
deepcopy
(
mb_wfg_22
),
reference_chirp_mass
=
self
.
test_parameters
[
'chirp_mass'
],
priors
=
priors
.
copy
()
wfg_mb
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
self
.
fmin
,
approximant
=
approximant
)
)
self
.
mb_ifftfft_22
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
ifos_22
,
waveform_generator
=
deepcopy
(
mb_wfg_22
),
reference_chirp_mass
=
self
.
test_parameters
[
'chirp_mass'
],
priors
=
priors
.
copy
(),
linear_interpolation
=
False
likelihood
=
bilby
.
gw
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg
)
self
.
mb_homs
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
ifos_hom
s
,
waveform_generator
=
deepcopy
(
mb_wfg_homs
)
,
likelihood_mb
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifo
s
,
waveform_generator
=
wfg_mb
,
reference_chirp_mass
=
self
.
test_parameters
[
'chirp_mass'
],
priors
=
priors
.
copy
(),
linear_interpolation
=
False
,
highest_mode
=
4
priors
=
self
.
priors
.
copy
(),
accuracy_factor
=
5
)
self
.
mb_more_accurate
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
ifos
_22
,
waveform_generator
=
deepcopy
(
mb_
wfg_
22
)
,
likelihood_
mb_more_accurate
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_
mb
,
reference_chirp_mass
=
self
.
test_parameters
[
'chirp_mass'
],
priors
=
priors
.
copy
(),
accuracy_factor
=
50
)
def
tearDown
(
self
):
del
(
self
.
non_mb_22
,
self
.
non_mb_homs
,
self
.
mb_22
,
self
.
mb_ifftfft_22
,
self
.
mb_homs
,
self
.
mb_more_accurate
priors
=
self
.
priors
.
copy
(),
accuracy_factor
=
50
)
@
parameterized
.
expand
([(
False
,
),
(
True
,
)])
def
test_matches_non_mb
(
self
,
add_cal_errors
):
self
.
non_mb_22
.
parameters
.
update
(
self
.
test_parameters
)
self
.
mb_22
.
parameters
.
update
(
self
.
test_parameters
)
if
add_cal_errors
:
self
.
non_mb_22
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
mb_22
.
parameters
.
update
(
self
.
calibration_parameters
)
likelihood
.
parameters
.
update
(
self
.
test_parameters
)
likelihood_mb
.
parameters
.
update
(
self
.
test_parameters
)
likelihood_mb_more_accurate
.
parameters
.
update
(
self
.
test_parameters
)
self
.
assertLess
(
abs
(
self
.
non_mb_22
.
log_likelihood_ratio
()
-
self
.
mb_22
.
log_likelihood_ratio
()),
1.5e-
2
abs
(
likelihood
.
log_likelihood_ratio
()
-
likelihood_mb_more_accurate
.
log_likelihood_ratio
()),
abs
(
likelihood
.
log_likelihood_ratio
()
-
likelihood_mb
.
log_likelihood_ratio
())
/
2
)
@
parameterized
.
expand
([(
False
,
),
(
True
,
)])
def
test_ifft_fft
(
self
,
add_cal_errors
):
def
test_reference_chirp_mass_from_prior
(
self
):
"""
Check if multi-banding likelihood with (h, h) computed with the
IFFT-FFT algorithm matches the original likelihood.
Check if reference chirp mass is automatically determined from prior if no number has been passed
"""
self
.
non_mb_22
.
parameters
.
update
(
self
.
test_parameters
)
self
.
mb_ifftfft_22
.
parameters
.
update
(
self
.
test_parameters
)
if
add_cal_errors
:
self
.
non_mb_22
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
mb_ifftfft_22
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
assertLess
(
abs
(
self
.
non_mb_22
.
log_likelihood_ratio
()
-
self
.
mb_ifftfft_22
.
log_likelihood_ratio
()),
6e-3
wfg_mb
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
self
.
fmin
,
approximant
=
"IMRPhenomD"
)
)
likelihood1
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_mb
,
reference_chirp_mass
=
self
.
priors
[
"chirp_mass"
].
minimum
,
priors
=
self
.
priors
.
copy
()
)
likelihood2
=
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_mb
,
priors
=
self
.
priors
.
copy
()
)
self
.
assertAlmostEqual
(
likelihood1
.
reference_chirp_mass
,
likelihood2
.
reference_chirp_mass
)
@
parameterized
.
expand
([(
False
,
),
(
True
,
)])
def
test_homs
(
self
,
add_cal_errors
):
def
test_no_reference_chirp_mass
(
self
):
"""
Check if
multi-banding likelihood matches the original likelihood for higher-order moments
.
Check if
an error is raised if either reference_chirp_mass or priors is not specified
.
"""
self
.
non_mb_homs
.
parameters
.
update
(
self
.
test_parameters
)
self
.
mb_homs
.
parameters
.
update
(
self
.
test_parameters
)
if
add_cal_errors
:
self
.
non_mb_homs
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
mb_homs
.
parameters
.
update
(
self
.
calibration_parameters
)
self
.
assertLess
(
abs
(
self
.
non_mb_homs
.
log_likelihood_ratio
()
-
self
.
mb_homs
.
log_likelihood_ratio
()),
1e-3
wfg_mb
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
self
.
fmin
,
approximant
=
"IMRPhenomD"
)
)
with
self
.
assertRaises
(
TypeError
):
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_mb
)
def
test_
large_accuracy_factor
(
self
):
def
test_
cannot_determine_reference_chirp_mass
(
self
):
"""
Check if
larger accuracy factor increases the accuracy.
Check if
an error is raised if priors does not contain necessary information to determine reference chirp mass
"""
self
.
non_mb_22
.
parameters
.
update
(
self
.
test_parameters
)
self
.
mb_22
.
parameters
.
update
(
self
.
test_parameters
)
self
.
mb_more_accurate
.
parameters
.
update
(
self
.
test_parameters
)
self
.
assertLess
(
abs
(
self
.
non_mb_22
.
log_likelihood_ratio
()
-
self
.
mb_more_accurate
.
log_likelihood_ratio
()),
abs
(
self
.
non_mb_22
.
log_likelihood_ratio
()
-
self
.
mb_22
.
log_likelihood_ratio
())
/
2
wfg_mb
=
bilby
.
gw
.
WaveformGenerator
(
duration
=
self
.
duration
,
sampling_frequency
=
self
.
sampling_frequency
,
frequency_domain_source_model
=
bilby
.
gw
.
source
.
binary_black_hole_frequency_sequence
,
waveform_arguments
=
dict
(
reference_frequency
=
self
.
fmin
,
approximant
=
"IMRPhenomD"
)
)
for
key
in
[
"chirp_mass"
,
"mass_1"
,
"mass_2"
]:
if
key
in
self
.
priors
:
self
.
priors
.
pop
(
key
)
with
self
.
assertRaises
(
Exception
):
bilby
.
gw
.
likelihood
.
MBGravitationalWaveTransient
(
interferometers
=
self
.
ifos
,
waveform_generator
=
wfg_mb
,
priors
=
self
.
priors
)
if
__name__
==
"__main__"
:
...
...
test/integration/sampler_run_test.py
View file @
1ec6f496
...
...
@@ -53,7 +53,7 @@ _sampler_kwargs = dict(
ntemps
=
1
,
frac_threshold
=
0.5
,
),
PTMCMCSampler
=
dict
(
Niter
=
101
,
burn
=
2
,
isave
=
100
),
PTMCMCSampler
=
dict
(
Niter
=
101
,
burn
=
100
,
covUpdate
=
100
,
isave
=
100
),
pymc
=
dict
(
draws
=
50
,
tune
=
50
,
n_init
=
250
),
pymultinest
=
dict
(
nlive
=
100
),
pypolychord
=
dict
(
nlive
=
100
),
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment