diff --git a/tupak/core/sampler.py b/tupak/core/sampler.py index 55f1b53384424e6cf4aebb0d6d7437c96cc0542e..f45af689bf4e8e56ea5615d8706b3fbfeed902ba 100644 --- a/tupak/core/sampler.py +++ b/tupak/core/sampler.py @@ -435,7 +435,7 @@ class Nestle(Sampler): """tupak wrapper `nestle.Sampler` (http://kylebarbary.com/nestle/) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `nestle.sample`, see documentation for + `run_sampler` will be propagated to `nestle.sample`, see documentation for that function for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults @@ -447,7 +447,7 @@ class Nestle(Sampler): method: {'classic', 'single', 'multi'} ('multi') Method used to select new points verbose: Bool - If true, print information information about the convergance during + If true, print information information about the convergence during sampling """ @@ -527,7 +527,7 @@ class Dynesty(Sampler): """tupak wrapper of `dynesty.NestedSampler` (https://dynesty.readthedocs.io/en/latest/) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `dynesty.NestedSampler`, see + `run_sampler` will be propagated to `dynesty.NestedSampler`, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults. @@ -546,10 +546,10 @@ class Dynesty(Sampler): dlogz: float, (0.1) Stopping criteria verbose: Bool - If true, print information information about the convergance during + If true, print information information about the convergence during check_point_delta_t: float (600) The approximate checkpoint period (in seconds). Should the run be - intererupted, it can be resumed from the last checkpoint. Set to + interrupted, it can be resumed from the last checkpoint. Set to `None` to turn-off check pointing resume: bool If true, resume run from checkpoint (if available) @@ -868,7 +868,7 @@ class Pymultinest(Sampler): """tupak wrapper of pymultinest (https://github.com/JohannesBuchner/PyMultiNest) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `pymultinest.run`, see documentation + `run_sampler` will be propagated to `pymultinest.run`, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults. @@ -882,7 +882,7 @@ class Pymultinest(Sampler): sampling_efficiency: float or {'parameter', 'model'}, ('parameter') Defines the sampling efficiency verbose: Bool - If true, print information information about the convergance during + If true, print information information about the convergence during resume: bool If true, resume run from checkpoint (if available) @@ -931,7 +931,7 @@ class Cpnest(Sampler): """ tupak wrapper of cpnest (https://github.com/johnveitch/cpnest) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `cpnest.CPNest`, see documentation + `run_sampler` will be propagated to `cpnest.CPNest`, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults. @@ -947,7 +947,7 @@ class Cpnest(Sampler): maxmcmc: int (1000) The maximum number of MCMC steps to take verbose: Bool - If true, print information information about the convergance during + If true, print information information about the convergence during """ @@ -1020,7 +1020,7 @@ class Emcee(Sampler): """tupak wrapper emcee (https://github.com/dfm/emcee) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `emcee.EnsembleSampler`, see + `run_sampler` will be propagated to `emcee.EnsembleSampler`, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults. @@ -1034,7 +1034,7 @@ class Emcee(Sampler): If given, the fixed number of steps to discard as burn-in. Else, nburn is estimated from the autocorrelation time burn_in_fraction: float, (0.25) - The fraction of steps to discard as burn-in in the evnt that the + The fraction of steps to discard as burn-in in the event that the autocorrelation time cannot be calculated burn_in_act: float The number of autocorrelation times to discard as burn-in @@ -1104,7 +1104,7 @@ class Ptemcee(Emcee): """tupak wrapper ptemcee (https://github.com/willvousden/ptemcee) All positional and keyword arguments (i.e., the args and kwargs) passed to - `run_sampler` will be propogated to `ptemcee.Sampler`, see + `run_sampler` will be propagated to `ptemcee.Sampler`, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak defaults. @@ -1161,7 +1161,7 @@ class Pymc3(Sampler): """ tupak wrapper of the PyMC3 sampler (https://docs.pymc.io/) All keyword arguments (i.e., the kwargs) passed to `run_sampler` will be - propogated to `pymc3.sample` where appropriate, see documentation for that + propapated to `pymc3.sample` where appropriate, see documentation for that class for further help. Under Keyword Arguments, we list commonly used kwargs and the tupak, or where appropriate, PyMC3 defaults.