diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 014eae1d0d26917f0df9a15f6d52c02502455667..0548297f49be461063a6ace3850cf06595a3750b 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -9,7 +9,7 @@ Getting started
 
 All the code lives in a git repository (for a short introduction to git, see
 [this tutorial](https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html))
-which is hosted here: https://git.ligo.org/Monash/bilby.  If you haven't
+which is hosted here: https://git.ligo.org/lscsoft/bilby.  If you haven't
 already, you should
 [fork](https://docs.gitlab.com/ee/gitlab-basics/fork-project.html) the repository
 and clone your fork, i.e., on your local machine run
@@ -62,7 +62,7 @@ you've found a bug or would like a feature it doesn't have, we want to
 hear from you!
 
 Our main forum for discussion is the project's [GitLab issue
-tracker](https://git.ligo.org/Monash/bilby/issues). This is the right
+tracker](https://git.ligo.org/lscsoft/bilby/issues). This is the right
 place to start a discussion of any of the above or most any other
 topic concerning the project.
 
diff --git a/README.rst b/README.rst
index 60fed7401bda63e221851db236d9e17f42ebd0e9..37ccec2cb029e4ea696e1b76e45cd1a341d2e78f 100644
--- a/README.rst
+++ b/README.rst
@@ -7,17 +7,17 @@ Fulfilling all your Bayesian inference dreams.
 
 -  `Installation
    instructions <https://monash.docs.ligo.org/bilby/installation.html>`__
--  `Contributing <https://git.ligo.org/Monash/bilby/blob/master/CONTRIBUTING.md>`__
+-  `Contributing <https://git.ligo.org/lscsoft/bilby/blob/master/CONTRIBUTING.md>`__
 -  `Documentation <https://monash.docs.ligo.org/bilby/index.html>`__
--  `Issue tracker <https://git.ligo.org/Monash/bilby/issues>`__
+-  `Issue tracker <https://git.ligo.org/lscsoft/bilby/issues>`__
 
 We encourage you to contribute to the development via a merge request.  For
 help in creating a merge request, see `this page
 <https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html>`__ or contact
 us directly.
 
-.. |pipeline status| image:: https://git.ligo.org/Monash/bilby/badges/master/pipeline.svg
-   :target: https://git.ligo.org/Monash/bilby/commits/master
+.. |pipeline status| image:: https://git.ligo.org/lscsoft/bilby/badges/master/pipeline.svg
+   :target: https://git.ligo.org/lscsoft/bilby/commits/master
 .. |coverage report| image:: https://monash.docs.ligo.org/bilby/coverage_badge.svg
    :target: https://monash.docs.ligo.org/bilby/htmlcov/
 .. |pypi| image:: https://badge.fury.io/py/bilby.svg
diff --git a/bilby/__init__.py b/bilby/__init__.py
index 57073bbee46aa72aea43c168b2d147d56681d20d..5796c4e2dbe4dd8725c3806267ec121794ed8d7f 100644
--- a/bilby/__init__.py
+++ b/bilby/__init__.py
@@ -9,7 +9,7 @@ estimation. It is primarily designed and built for inference of compact
 binary coalescence events in interferometric data, but it can also be used for
 more general problems.
 
-The code, and many examples are hosted at https://git.ligo.org/Monash/bilby.
+The code, and many examples are hosted at https://git.ligo.org/lscsoft/bilby.
 For installation instructions see
 https://monash.docs.ligo.org/bilby/installation.html.
 
diff --git a/docs/basics-of-parameter-estimation.txt b/docs/basics-of-parameter-estimation.txt
index 83678102ec7f33f52fceadf5b95c963959121e95..f111fe9595d4cb41ed9d47b26138ea24a2a8a4d2 100644
--- a/docs/basics-of-parameter-estimation.txt
+++ b/docs/basics-of-parameter-estimation.txt
@@ -81,7 +81,7 @@ The code
 
 In the following example, also available under
 `examples/other_examples/linear_regression.py
-<https://git.ligo.org/Monash/bilby/tree/master/examples/other_examples/linear_regression.py>`_
+<https://git.ligo.org/lscsoft/bilby/tree/master/examples/other_examples/linear_regression.py>`_
 we will step through the process of generating some simulated data, writing
 a likelihood and prior, and running nested sampling using `bilby`.
 
diff --git a/docs/compact-binary-coalescence-parameter-estimation.txt b/docs/compact-binary-coalescence-parameter-estimation.txt
index 9deb53a7a7d35170baa951217781f75d8ccb62a4..2fcb97806cac089cdb44fc51cff4219f6e2ee54c 100644
--- a/docs/compact-binary-coalescence-parameter-estimation.txt
+++ b/docs/compact-binary-coalescence-parameter-estimation.txt
@@ -3,7 +3,7 @@ Compact binary coalescence parameter estimation
 ===============================================
 
 In this example, which can be found `here
-<https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py>`_,
+<https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/basic_tutorial.py>`_,
 we demonstrate how to generate simulated data for a binary black hole
 coalescence observed by the two LIGO interferometers at Hanford and Livingston.
 
@@ -25,4 +25,3 @@ Finally, after running the parameter estimation. It generates a corner plot:
 .. image:: images/basic_tutorial_corner.png
 
 The solid lines indicate the injection parameters.
-
diff --git a/docs/examples.txt b/docs/examples.txt
index 19f3e0ee16f1fb3f66ced29b109cf4ca9bbad8b4..cfeddf61cf9939cc2939bfdfc128edd1daa830a6 100644
--- a/docs/examples.txt
+++ b/docs/examples.txt
@@ -2,37 +2,35 @@
 Examples
 ========
 
-1. `General inference examples <https://git.ligo.org/Monash/bilby/tree/master/examples/other_examples>`_
+1. `General inference examples <https://git.ligo.org/lscsoft/bilby/tree/master/examples/other_examples>`_
 
-   - `A simple Gaussian likelihood <https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/gaussian_example.py>`_: a good example to see how to write your own likelihood.
-   - `Linear regression for unknown noise <https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_: fitting to general time-domain data.
+   - `A simple Gaussian likelihood <https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/gaussian_example.py>`_: a good example to see how to write your own likelihood.
+   - `Linear regression for unknown noise <https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_: fitting to general time-domain data.
 
 2. `Examples of injecting and recovering
-   data <https://git.ligo.org/Monash/bilby/tree/master/examples/injection_examples>`__
+   data <https://git.ligo.org/lscsoft/bilby/tree/master/examples/injection_examples>`__
 
    -  `A basic
-      tutorial <https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/basic_tutorial.py>`__
+      tutorial <https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/basic_tutorial.py>`__
    -  `Create your own source
-      model <https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/create_your_own_source_model.py>`__
+      model <https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/create_your_own_source_model.py>`__
    -  `Create your own time-domain source
-      model <https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/create_your_own_time_domain_source_model.py>`__
+      model <https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/create_your_own_time_domain_source_model.py>`__
    -  `How to specify the
-      prior <https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/how_to_specify_the_prior.py>`__
+      prior <https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/how_to_specify_the_prior.py>`__
    -  `Using a partially marginalized
-      likelihood <https://git.ligo.org/Monash/bilby/blob/master/examples/injection_examples/marginalized_likelihood.py>`__
+      likelihood <https://git.ligo.org/lscsoft/bilby/blob/master/examples/injection_examples/marginalized_likelihood.py>`__
 
 3. `Examples using open
-   data <https://git.ligo.org/Monash/bilby/tree/master/examples/open_data_examples>`__
+   data <https://git.ligo.org/lscsoft/bilby/tree/master/examples/open_data_examples>`__
 
    -  `Analysing the first Binary Black hole detection,
-      GW150914 <https://git.ligo.org/Monash/bilby/blob/master/examples/open_data_examples/GW150914.py>`__
+      GW150914 <https://git.ligo.org/lscsoft/bilby/blob/master/examples/open_data_examples/GW150914.py>`__
 
 4. `Notebook-style
-   tutorials <https://git.ligo.org/Monash/bilby/tree/master/examples/tutorials>`__
+   tutorials <https://git.ligo.org/lscsoft/bilby/tree/master/examples/tutorials>`__
 
    -  `Comparing different
-      samplers <https://git.ligo.org/Monash/bilby/blob/master/examples/tutorials/compare_samplers.ipynb>`__
+      samplers <https://git.ligo.org/lscsoft/bilby/blob/master/examples/tutorials/compare_samplers.ipynb>`__
    -  `Visualising the
-      output <https://git.ligo.org/Monash/bilby/blob/master/examples/tutorials/visualising_the_results.ipynb>`__
-
-
+      output <https://git.ligo.org/lscsoft/bilby/blob/master/examples/tutorials/visualising_the_results.ipynb>`__
diff --git a/docs/installation.txt b/docs/installation.txt
index a803ae1c16bd8bcd72ff489c5d40fc09da0ffd15..7125bbbefd61242ef9dd4f3a98e36ac0421e5475 100644
--- a/docs/installation.txt
+++ b/docs/installation.txt
@@ -25,7 +25,7 @@ Clone the repository, install the requirements, and then install the software:
 
 .. code-block:: console
 
-   $ git clone git@git.ligo.org:Monash/bilby.git
+   $ git clone git@git.ligo.org:lscsoft/bilby.git
    $ cd bilby/
    $ pip install -r requirements.txt
    $ pip install -r optional_requirements.txt
@@ -47,7 +47,7 @@ plan to use `bilby` for gravitational wave inference.
 
    .. code-block:: console
 
-      $ git clone https://git.ligo.org/Monash/bilby.git
+      $ git clone https://git.ligo.org/lscsoft/bilby.git
 
 .. _installing-python:
 
@@ -190,4 +190,3 @@ can purge your installation of bilby by running
    $ rm -r /home/user1/anaconda/lib/python3.6/site-packages/bilby*
 
 Replacing the path with the output of the previous command.
-
diff --git a/docs/likelihood.txt b/docs/likelihood.txt
index 12ee1be69e5a76456c3b2773d24093ae5417e020..27b118bdfcfb0b811947319be6ea1476b7c48dd4 100644
--- a/docs/likelihood.txt
+++ b/docs/likelihood.txt
@@ -67,7 +67,7 @@ This demonstrates the two required features of a :code:`bilby`
 #. It has a :code:`log_likelihood` method which, when called returns the log
    likelihood for all the data.
 
-You can find an example that uses this likelihood `here <https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/gaussian_example.py>`_.
+You can find an example that uses this likelihood `here <https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/gaussian_example.py>`_.
 
 .. tip::
 
@@ -158,7 +158,7 @@ be the dependent variable.
     as the case when there is no signal (i.e., :math:`y(x; \theta)=0`).
 
 You can see an example of this likelihood in the `linear regression example
-<https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/linear_regression.py>`_.
+<https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/linear_regression.py>`_.
 
 General likelihood for fitting a function :math:`y(x)` to some data with unknown noise
 --------------------------------------------------------------------------------------
@@ -217,7 +217,7 @@ We provide this general-purpose class as part of bilby:
 .. autoclass:: bilby.core.likelihood.GaussianLikelihood
    :members:
 
-An example using this likelihood can be found `on this page <https://git.ligo.org/Monash/bilby/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_.
+An example using this likelihood can be found `on this page <https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_.
 
 Common likelihood functions
 ---------------------------
diff --git a/setup.py b/setup.py
index 5747efc3ccfc320d6c99067b366b1fde5f2397e2..e0c7b326ca6d4b13f17a790a4317dc98e9b2f927 100644
--- a/setup.py
+++ b/setup.py
@@ -64,7 +64,7 @@ long_description = get_long_description()
 setup(name='bilby',
       description='A user-friendly Bayesian inference library',
       long_description=long_description,
-      url='https://git.ligo.org/Monash/bilby',
+      url='https://git.ligo.org/lscsoft/bilby',
       author='Greg Ashton, Moritz Huebner, Paul Lasky, Colm Talbot',
       author_email='paul.lasky@monash.edu',
       license="MIT",