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With the advanced LIGO and Virgo detectors nearing completion the detection of gravitational
waves is imminent. To fully realize the potential for gravitational wave astronomy we must charac-
terize the signals and infer the nature of the emitting objects. Extracting astrophysical information
from gravitational wave detections is straightforward and well studied when detailed models for the
waveforms are available, However, an important source of motivation for the field of gravitational
wave astronomy is the potential for new discoveries. Recognizing unanticipated signals requires
sophisticated data analysis techniques which do not depend on theoretical models. How to draw ro-
bust inferences from un-modeled sources of gravitational waves is not yet established, and detection
methods are hampered by transient noise artifacts, or “glitches,” in the detectors. We have put forth
the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches,
and to provide robust waveform reconstruction and characterization of the astrophysical signals.
Here we showcase BayesWave’s capabilities by demonstrating glitch rejection, signal identification,
and waveform characterization using data from LIGO and Virgo collected from 2009 to 2010.

I. INTRODUCTION

When the LIGO [1] and Virgo [2] observatories make
their first detection of gravitational waves (GW) it will be
a monumental achievement in the history of science. De-
tection itself is only part of the challenge. Gravitational
wave astronomy comes to fruition through characteriz-
ing signals and using them to draw astrophysical infer-
ences. Procedures for mining through the LIGO/Virgo
data searching for signals and estimating the background
have largely been in place since the initial interferome-
ters were in operation. As detector sensitivity has im-
proved through hardware upgrades [3, 4], and with it
the prospects for detections, development of methods for
characterizing candidate detections have become a prior-
ity. For template-based analyses hunting the mergers of
compact objects (neutron stars or black holes) Bayesian
stochastic sampling methods have been studied for over a
decade, starting with the pioneering efforts of Chrstensen
and Meyer [5], and culminating in LALInference – a
robust data analysis pipeline for parameter estimation
of compact binaries [6]. Search methods for transient
un-modeled gravitational wave signals, or “bursts,” have
similarly been in place since the first observing runs
with initial LIGO thanks to the stalwart burst detection
pipeline, coherent WaveBurst [7]. Unlike the template-
based analyses, characterizing un-modeled signals is a
less well-defined problem and a flagship burst parame-
ter estimation and model selection analysis has not been
identified.
Attempts at making astrophysical inferences from the

data without good models for the gravitational wave sig-
nal have focused on waveform and position reconstruc-

tion. Time-of-arrival differences between detectors [8, 9],
and the relative amplitudes of the GW at each interfer-
ometer [10] provides sky-location information, with tim-
ing and amplitude uncertainty propagating through the
calculations to estimate the error-bars on position recon-
struction. The LALInference pipeline has been applied
to the burst problem using a sine-Gaussian template as
a surrogate waveform, the byproduct of which are ro-
bust Bayesian posteriors for the sky-location [11]. These
position reconstruction methods provide useful informa-
tion for electromagnetic follow-up observations of grav-
itational wave detections but do not yield sufficient (or
any) insight into the gravitational wave signal itself.

Burst analyses targeting specific signal types can bear
some insight into the gravitational wave source. Core-
collapse supernova are important sources for Advanced
LIGO and fall into the “burst” analyses because our
theoretical understanding of the explosion mechanism,
and resultant gravitational radiation, is not sufficient to
use matched filtering methods. Numerical simulations
do provide some information about possible waveform
morphologies which can be harnessed for parameter esti-
mation purposes. Summerscales et al used a Maximum
Entropy method for detection, waveform reconstruction,
and rudimentary parameter estimation by correlating the
inferred signal with a catalog of waveforms from numer-
ical simulations of core collapse supernovae [12]. These
studies showed potential for distinguishing between mod-
els for density, angular momentum, differential rotation,
and progenitor mass.

Methods using principal component analyses (PCA)
where the principal components are constructed from
catalogs of core-collapse supernova simulation waveforms
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have recently come into vogue. Rover et al have demon-
strated how progenitor mass, angular momentum, and
equation of state parameters can be extracted from ro-
tating stellar core collapse models [13]. Logue et al and
Edwards et al differentiate between progenitor models by
using PCAs constructed from simulations of the different
catalogs as competing models for the data, then compar-
ing the Bayesian evidence for each PC family [14, 15].

Still missing is a burst analysis which provides ro-
bust parameter estimation and waveform reconstruction
for generic transient gravitational wave signals. Fur-
thermore, previous searches for gravitational waves have
been limited by transient, non-Gaussian noise artifacts,
or glitches, which cause the various detection statistics to
have heavier tails than they would for Gaussian noise [16–
18]. Glitches are especially problematic for burst searches
which, unlike binary in-spiral analyses, do not have the
advantage of strong constraints on the GW signal mor-
phology. A data analysis procedure which can provide
robust parameter estimation, signal reconstruction, and
glitch rejection for candidate generic gravitational wave
transients is necessary to maximize the potential of grav-
itational wave observatories.

Recently we proposed BayesWave – a Bayesian algo-
rithm to fill the gap in burst analysis by following-up
candidate gravitational wave transient events found by
the search pipelines, segregate signals from glitches, and
provide robust signal characterization for arbitrary burst
waveforms [19]. BayesWave compares the Bayesian evi-
dence for the data containing a GW signal, an instru-
ment artifact, or merely statistical fluctuations of the
instrument background consistent with Gaussian noise.
In the event that the candidate is of astrophysical ori-
gin, BayesWave also produces posterior distributions for
the source sky-location and orientation; accurate wave-
form reconstruction; and metrics to characterize the sig-
nal such as duration, bandwidth, signal energy, etc.
In all instances, BayesWave also provides a complete
characterization of the instrument noise including spec-
tral estimation for the background Gaussian noise and
“glitches” which can then be used to feedback into the
never-ending effort to improve the interferometers’ per-
formance. Analysis of the Gaussian component of the
instrument noise is handled by BayesWave’s sibling algo-
rithm, BayesLine [20]. In this paper we will demonstrate
BayesWave’s potential by analyzing data from the sixth
LIGO science run (S6) which took place from 2009-2010.
Our results are achieved by analyzing data known to con-
tain glitches which contributed to the long-tailed back-
ground distribution for the burst search, and by adding
simulated gravitational wave signals to detector noise.

In section II we will briefly re-introduce the BayesWave
and BayesLine algorithms. Section III contains results
showing how BayesWave successfully rejects glitches in
LIGO data (III A) while still efficiently detecting simu-
lated signals (III B) by using Bayesian evidence and a
flexible, parameterized, model for the instrument noise.
We also demonstrate how BayesWave can be used to in-

form our physical interpretation of detected signals with-
out relying on theoretical models of burst waveforms
in Section III C. Section IV provides a summary of
our findings and discussion of future improvements for
BayesWave.

II. METHOD

Fundamentally, we have constructed a complete pa-
rameterized model for the LIGO/Virgo detector output
including noise and GW signals. BayesWave then uses a
Markov chain Monte Carlo (MCMC) algorithm to pro-
duce samples for the posterior distribution function of
the model parameters [21]. The model has three distinct
components: A gravitational wave signal h that is ellipti-
cally polarized and is coherent across the network of de-
tectors; glitches g – non-Gaussian noise transients that
are independent in each interferometer; and stationary
Gaussian noise which is fully characterized by its power
spectral density Sn(f), proportional to the variance of
the noise at each frequency.

A. Gaussian noise model

Instrument noise n from gravitational wave detectors
is well approximated by a zero mean, stationary, Gaus-
sian distribution which is completely characterized by the
frequency-dependent variance 〈|ñ(f)|2〉 = T

2
Sn(f). Here

a tilde denotes a Fourier transform, T is the observa-
tion time and Sn(f) is the noise power spectral density
(PSD). The LIGO/Virgo noise budget is broadly dom-
inated, from low to high frequency, by seismic noise,
thermal noise from the mirror suspensions and coatings
dominate, and quantum (photon shot) noise. Additional
narrow band spectral lines which originate from a vari-
ety of sources including the mirror suspensions, the AC
electrical supply, or sinusoidal motion imparted on the
mirrors for calibration punctuate the otherwise smooth
noise spectrum.

We have developed a two-component model to fit to the
different qualitative features in the PSD. The broadband
noise is parameterized by control points in frequency-
PSD space which are interpolated between using a cubic
spline fit. The spectral lines are modeled by a linear com-
bination of Lorentzians. The number of spline control
points and Lorentzians used in the model are determined
using a trans-dimensional Reverse Jump Markov Chain
Monte Carlo (RJMCMC) algorithm [27] . The Gaus-
sian noise model uses a separate sampling algorithm,
BayesLine to produce a posterior distribution for the
instrument noise. Further details about the character-
istics of the LIGO Gaussian noise, and the BayesLine

algorithm, can be found in Ref [20].
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B. Glitch and signal model

While stationary Gaussian noise is generally a good
description for LIGO/Virgo noise the approximation
breaks down with much higher regularity than the ar-
rival of detectable gravitational waves. Any data analysis
method must have a strategy for accounting for the non-
stationary non-Gaussian noise. Most existing procedures
opt for estimating the background rate of transient noise
glitches and using that to adjust the threshold for detect-
ing a gravitational wave signal. We instead approach the
problem by developing a parameterized model glitches
and incorporating it into our overall representation of
the detector noise.

Because we don’t know a priori the functional form
of glitch or GW burst waveforms, our model for both
must be flexible. Inspired by the work of Principe and
Pinto [22, 23] which found that a modest number of
wavelet basis functions were needed to accurately rep-
resent typical glitches in initial LIGO data, and our own
experience of determining the number of white dwarf
binaries which can be distinguished from a confusion-
limited background in space-based gravitational wave de-
tectors [24–26], we use a linear combination of Morlet-
Gabor wavelets as our waveform model. Each basis func-
tion (wavelet) is described by five intrinsic parameters:
central frequency f0; central time t0; amplitude A; qual-
ity factor Q; and phase offset φ0; and is expressed in the
time-domain as

Ψ (t;A, f0, Q, t0, φ0) = Ae−∆t2/τ2

cos (2πf0∆t+ φ0) ,
(1)

where τ = Q/(2πf0) and ∆t = t− t0. Like in BayesLine,
the novel feature of BayesWave is that the number of
wavelets included in the linear combination, N , is also
a model parameter thereby requiring a RJMCMC to de-
termine the number of wavelets needed for the model to
be consistent with the data.

If the gravitational wave signal and the glitch model
use the same functional form for the waveform, how can
we distinguish the two? Glitches are not correlated be-
tween detectors so the linear combination of wavelets
used to fit data from one observatory will be indepen-
dent from the linear combination in the other. The sig-
nal is coherent across the network so we reconstruct the
waveform as it would appear at the center of the Earth
(geocenter) and forward-model the response of each de-
tector with the addition of four extrinsic parameters:
polar and azimuthal angles for the sky location (θ, φ);
ellipticity ǫ to decompose the signal into the two gravita-
tional wave polarizations + and ×; and the polarization
angle ψ. Bayesian model selection is then used to de-
termine which hypothesis – glitch or gravitational wave
signal – is most consistent with the data. If a signal
requiring Nwavelet wavelets to model deposits similar en-
ergy in each of the Ndetector detectors the signal model
will use Ds = 5Nwavelet + 4 parameters while the glitch
model, fitting each detector’s data independently, will

use Dg = Ndetector × 5Nwavelet parameters. Occam’s ra-
zor will favor the signal model. If a glitch appears in
a single detector the signal model may be able to find
extrinsic parameters which put zero signal energy in one
detector, thereby achieving a similar fit to the data for
the same number of wavelets, but will pay the price of
carrying the extrinsic parameters, and Occam’s razor will
favor the glitch model.
Counting degrees of freedom is, of course, an overly

simplistic way of hypothesis testing. Not all dimensions
are created equally as unconstrained parameters should
not penalize the model. The actual model comparisons
are done by comparing the Bayesian evidence.

C. Computing the evidence

The central engine of BayesWave is a RJMCMC al-
gorithm which, by construction, prefers the most parsi-
monious model for the data. RJMCMCs are used for
model selection problems because they directly sample
from the likelihood distribution in model-space. RJM-
CMCs require carefully tuned proposal distributions to
adequately mix between models and can be notoriously
difficult to implement, especially when the evidence ra-
tio for the models under comparison has large dynamic
range from one run to the next We have developed an
RJMCMC implementation that mixes well within each
model, sufficiently marginalizing over the number of ba-
sis functions needed for the glitch, signal, or noise model.
Exchanges between models, on the other hand, are chal-
lenging and we currently can not rely on RJMCMC to
select between, for example, the signal or glitch model.
For model selection to determine if the data being ana-
lyzed contain a gravitational wave or not, we use a more
brute-force method for evidence calculation – thermody-
namic integration (TI) [28].
In our implementation of TI we use parallel tempering,

where many Markov chains are run simultaneously, each
sampling with a likelihood function L [25, 29]. The like-
lihood is modified by “temperature” Ti via Li = L1/Ti

where the subscript i is used to label the different Markov
chains. Chains with T ≫ 1 sample from the prior, while
the chain with T = 1 samples the posterior. Chains can
exchange parameters without violating detailed balance
making parallel tempering a common approach to im-
prove the efficiency and reliability of the MCMC. Ther-
modynamic integration uses the likelihood distribution
of each chain to compute the log evidence by integrating
the average log likelihood of each chain over the inverse
temperature.
To summarize, we analyze data with a candidate

event using three separate over-arching models (Gaus-
sian noise, glitch, or gravitational wave signal). Within
each analysis we use a parallel tempered RJMCMC
to achieve the appropriate complexity, and produces
model-averaged posterior distributions functions for pa-
rameters. Thermodynamic integration is then used to
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compute the evidence for each model, which has been
marginalized over the number of basis functions needed
for each model. The entire procedure is discussed in de-
tail in Refs. [19, 20].

III. RESULTS

In this section we will demonstrate BayesWave’s glitch
rejection, signal detection, and characterization capabil-
ities. Model selection is performed by computing the
Bayesian evidence for each model under consideration.
Evidence ratios, or “Bayes factors,” yield the relative
likelihood for the two models. If we assume that prior
preferences for different models are even the Bayes fac-
tor is equivalent to the odds ratio. The odds ratio tells
us the relative probability that the two models are the
correct description of the data. To simplify the interpre-
tation of our results we will distill the Bayes factors into
a decision criteria. BayesWave estimates the variance σ2

of the statistical error in the evidence calculation and we
will consider models that are preferred by greater than
3σ as “clear” preference for that model. [We need one
more sentence to cover our embarrassment for using the
Bayes Factor as a statistic. I can redo the background
plots using 1,2,3 sigma contours. I could do the same for
the efficiency curves but that would be a mess.]

A. Glitch rejection

The BayesWave algorithm’s glitch-rejection perfor-
mance is quantified by analyzing data from LIGO’s sixth
(S6) and Virgo’s second (VSR2) science runs. The algo-
rithm is tested on data with known problematic glitches
by analyzing the most significant background events for
the coherent WaveBurst burst search. To understand
this study we must describe the procedure for estimat-
ing background. Gravitational wave detectors can not be
shielded from incoming gravitational radiation so back-
grounds must be estimated from data potentially con-
taining gravitational wave signals. Because coincidence
is required for detection (a signal in one interferometer
is indistinguishable from a glitch) the background is esti-
mated by time-shifting the data from one interferometer
with respect to another to guarantee there are no coin-
cident signals, and then running the time-shifted data
through the detection pipeline. Events from the anal-
ysis of time-shifted data that score high in the ranking
statistic – due to glitches in different detectors that for-
tuitously line up with one another – create the back-
ground distribution, and ultimately the thresholds for
detection [30].
To demonstrate BayesWave’s effectiveness we select

the 100 highest-ranking background events with central
frequency below 512 Hz from each 2-detector combina-
tion of S6/VSR2, making 300 background events total.
BayesWaveis run on the time-shifted data as if it were

coincident and asked to compare the evidence that the
data contain a coherent gravitational wave signal, or in-
coherent but coincident glitches. Figure 1 shows the re-
sults of this test. The dependent variable ρ, which is
related to the signal to noise ratio (SNR), is the ranking
statistic used by cWB. The gray dashed histogram shows
the number of background events at different values of
ρ found by the original burst search which were then, in
part, used to determine the threshold for detection. The
red solid histogram shows the distribution of these pre-
selected background events that are favored by the signal
model over the glitch model by BayesWave. The blue dot-
ted histogram applies an additional cut that the signal
model is also preferred over the Gaussian noise model.
By employing BayesWave to discriminate between signal
and noise we see reduction in the background by almost
an order of magnitude across ρ, completely eliminating
all background events with ρ >∼ 10.
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FIG. 1: Distribution of background events from the fourth
quarter of S6/VSR2 run found by analyzing time shifted data
(color online). The x-axis is ρ, the ranking statistic for the cWB
search pipeline. The black, dashed histogram is the cWB back-
ground. The solid (red) histogram are the remaining back-
ground events after rejecting times when BayesWave preferred
the glitch model over the signal. The dotted (blue) distribu-
tion uses an additional requirement that the signal model has
to be favored over the Gaussian noise model. BayesWave pro-
vides dramatic reduction in the number of background events.

B. Signal detection

Any pipeline could be tuned to achieve similar glitch
rejection capabilities to what is shown in Fig. 1 but there
is a trade-off in detection efficiency. Rejecting back-
ground events is only useful if we do not mis-classify real
signals as glitches. We demonstrate BayesWave’s detec-
tion capabilities by adding simulated gravitational wave
signals, “injections,” to data taken during S6.
We inject two waveform morphologies: elliptically po-

larized sine-Gaussian waveforms (SG) and unpolarized
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white-noise bursts (WNB). White noise bursts used in
this analysis are simulated by band-passing white noise
between 100 and 200 Hz and then time windowing the
white noise with a Gaussian profile of duration 100ms.
The h+ and h× polarizations are simulated indepen-
dently resulting in unpolarized injections [31].

Because our basis functions for signal/glitch recon-
struction are identical to the SG injections, analysis of
these signals is equivalent to a template-based approach
and provides important sanity checks for the pipeline.
However, the difference in dimension between the glitch
and the signal model for SG injection, which needs just a
single basis function to reconstruct the waveform, is at a
minimum. Form the point of view of segregating glitches
and signals, we counterintuitively have the least fidelity
for waveforms that match our basis functions.

WNB injections are, from the vantage point of
waveform reconstruction, the worst-case-scenario for
BayesWave. The injections will require a large number
of basis functions to recover most of the power, and the
injected waveforms are un-polarized whereas BayesWave
assumes elliptical polarization.

Figure 2 summarizes the results from our study if sig-
nal injections. Each curve shows the efficiency with which
BayesWave correctly identifies the data as containing a
gravitational wave signal as a function of the signal to
noise ratio. The left-hand panel has the efficiency curves
for the signal model versus the Gaussian noise model
plotted as a function of network SNR. We find the ef-
ficiency going to one for network SNRs around 10 for
the sine-Gaussian waveforms (red, solid), and 20 for the
white noise burst waveforms (blue, dashed). This is con-
sistent with our expectations given our choice of signal
model – for the SG injections BayesWave is a matched
filtering search so we expect high efficiency. WNB sig-
nals, on the other hand, have more diffuse time frequency
support, requiring more wavelets, and are not elliptically
polarized, preventing BayesWave from ever achieving a
perfect match to the signal.

The key piece of evidence that BayesWave does not
sacrifice detection efficiency for the sake of glitch rejec-
tion comes from comparing the signal vs. glitch efficiency
curves for the lowest SNR in the network (SG: magenta,
dotted, WNB: cyan, dashed-dotted). Depending on the
sky location and polarization of an injection, the signal
may only be “detectable” in a single interferometer. A
signal that only appears in one detector is indistinguish-
able from a glitch when we do not have strong constraints
on the waveform morphology.

For sine-Gaussian waveforms, we find them to be com-
pletely distinguishable from Gaussian noise above SNRs
of 10. For signal/glitch separation there are high net-
work SNR injections that are identified as glitches – the
network efficiency curve does not go to 1. At the point
where lowest SNR in the network approaches 10 – i.e.
the signal becomes detectable in each interferometer –
we find 100% efficiency in discriminating these injections
from glitches. High network SNR injections that are clas-
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FIG. 2: Efficiency for selecting the signal model as a func-
tion of injected SNR compared to the Gaussian noise model
(left) and glitch model (right). The signal-to-glitch panel has
efficiency curves for the network SNR (SG: red/solid, WNB:
blue/dashed) and for the lowest SNR in the network (SG: ma-
genta/dotted, WNB: cyan/dash-dotted). All injections were
performed in data from LIGO’s sixth science run.

sified as glitches have unfortunate combinations of sky-
location and polarizations such that all of the detectable
power ends up in one interferometer. Without strong
signal priors such events should be classified as glitches.
None of the sine-Gaussian injections which we would ex-
pect to be detected – having measurable power in each
interferometer – are misclassified as glitches.
Similar conclusions can be drawn for the WNB in-

jections despite the expected difficulty BayesWave’s sig-
nal model would have representing these waveforms with
high fidelity. Despite the injected signal morphology be-
ing so different from the signal model basis functions, the
only substantial difference between BayesWave’s perfor-
mance on sine-Gaussian injections and white noise bursts
is the injected signal to noise ratio where the waveforms
become distinguishable from Gaussian noise. Similar to
the SG injections, once there is detectable power in both
interferometers injections are properly identified as sig-
nals.

C. Parameter estimation

[I’m out of gas. Anybody want to suggest a paragraph
or two. Check out Figure 3].

IV. DISCUSSION

We have previously put forth a new way of characteriz-
ing un-modeled gravitational wave transient signals while
simultaneously providing robust model selection compar-
isons between gravitational wave and glitchy noise hy-
potheses. In this paper we report on the first large-scale
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FIG. 3: Overlap of recovered waveform with injected wave-
form in each interferometer as a function of SNR. The solid
(red) error bars represent the 90% credible interval of the
overlap posterior distribution for detections of polarized sine-
Gaussian waveforms. The blue (dotted) error bars are for the
unpolarized white noise burst injections.

tests of BayesWave on data collected by the LIGO and
Virgo observatories by analyzing times known to contain
glitches which contributed to the search backgrounds,
and by adding simulated GW signals to otherwise noise-
only data. BayesWave has performed admirably at reject-
ing background events as being instrument noise without
loss of detection efficiency.

BayesWave is unique in its ability to segregate glitches
from signals because the glitch/gaussian noise models
provide an alternative to the signal model when the data
contain instrument artifacts. Having a noise model that
includes the possibility of glitches sets a higher bar for
a candidate event to be classified as a signal. If the sig-
nal model leaves behind any significant excess power the
glitch model will be preferred. While glitches which for-
tuitously end up being coincident in time and frequency
pose a challenge for searches, BayesWave has success-
fully classified these transient events as being instrument
noise. It should be pointed out that the glitch rejec-
tion fidelity will increase with the strength of the signal.
High signal-to-noise ratio glitches place more stringent
demands on the signal model because even small mis-
matches between the model and the data will leave be-
hind significant residual while the glitch model, by con-
struction, will account for all excess power. These re-
sults suggest that BayesWave can dramatically reduce the
background for burst searches in Advanced LIGO/Virgo
thereby increasing the range of the interferometers.

Glitch rejection is of no use if good candidates for de-
tection are rejected as well. We confirm that BayesWave’s
detection capabilities are not hampered by the glitch
model by analyzing data from LIGO’s sixth science run
to which we have added simulated gravitational wave sig-
nals of varying strength, to measure at what signal to
noise ratio the injections are identified as signals by our

algorithm. We find that BayesWave’s detection efficiency
behaves exactly as expected – when there is detectable
power in multiple interferometers, the gravitational wave
model is the preferred hypothesis for the data.

The Advanced LIGO detectors are due to be completed
and collecting data before upgrades to Virgo are finished.
The LIGO detectors are similarly aligned with one an-
other and, as a consequence, are predominantly sensitive
to a single polarization. Our assumption of elliptically
polarized signals is most often sufficient for LIGO-only
analyses and will therefore be adequate for the first ad-
vanced detector observations. However, for very high
SNR injections of unpolarized signals (>∼ 50) the ellipti-
cally polarized signal model can not find an adequate fit
and falsely classifies the injection as a glitch. While such
loud signals are unlikely for near-future ground based de-
tectors, we need to relax the requirement that signals be
elliptically polarized without introducing unconstrained
directions in the parameter space. If we were to allow h+
and h× to vary independently, most sky-locations would
allow one polarization to be unconstrained which will
negatively impact the Markov chain performance. Addi-
tional priors will be required on the signal model to hold
both polarizations in check. A method to allow indepen-
dent polarizations for the two-detector network without
affecting MCMC convergence is under investigation, and
BayesWave’s glitch rejection capabilities will need to be
re-quantified once we have relaxed this restriction on the
signal model.

The results reported in this paper are suggestive
that burst detection efficiency will benefit by employing
BayesWave as a follow-up to background events and can-
didate detections from burst search pipelines such as cWB.
This study alone is not sufficient to make that claim. A
large-scale comparison between the detection efficiency
of the burst pipeline with and without BayesWave’s in-
put is required to unambiguously quantify any improve-
ment. Completing this comparison is of upmost impor-
tance prior to the start of advanced LIGO observations
and is now under way.

The parameter estimation capabilities of BayesWave

are in their infancy. Any and all quantitates of interest
stem directly from the reconstructed waveform, and we
have shown high fidelity between what BayesWave recov-
ers and what is injected into the data. Now that a robust
tool for assessing waveform characteristics is in place we
have to develop a set of useful metrics for learning about
the astrophysical nature of a burst source. These will
most likely depend on different hypotheses for the GW
emission. We have begun to explore which are the most
useful waveform diagnostics by studying a wider vari-
ety of predicted burst waveform morphologies including
core-collapse supernova, stellar mass black hole mergers,
eccentric black binary encounters, etc.
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