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ABSTRACT

We show that a simple model demonstrates some key properties of the signal to glitch bayes factor.
Moreover, we show that background rates using BayesWave are predictable.

Subject headings: gravitational waves

1. THE SIGNAL TO GLITCH BAYES FACTOR

Past searches for Burst signals are based on frame-
works that employ detection statistics to measure the
likelihood that Gaussian noise could produce the data
[cite burst search papers]. After the detection statistic is
calculated, various cuts are applied to separate glitches
from astrophysical signals. In these searches, the false
alarm rate (FAR), as measured by time-slide studies, is
difficult to predict in advance. Typically, the searches
succeed in identifying times that are inconsistent with
Gaussian noise, but the FAR is dominated by glitches
that are not removed by the the applied cuts. In many
cases, the distribution of these glitches as a function of
the detection statistic has a long “tail”, suggesting that
false alarms are possible at any value of the detection
statistic. This leads to a dissapointing conclusion: essen-
tially no gravitational wave signal, no matter how loud,
could be declared a high-confidence detection.

In contrast, the BayesWave algorithm includes a glitch
model, and computes the evidence ratio that a given trig-
ger is a gltich or an astrophysical signal. In this section,
we propose using this evidence, known as the Bayes Fac-
tor, as a detection statistic, and explore its propoerties.
Given minimal assumptions about the underlying glitch
population, we find that this statistic has some desirable
properties:

e The FAR always goes to lower values with increas-
ing detection statistic.

e The expectation value of the loudest event is fairly
insesitive to the underlying glitch population, so it
is possible to predict it in advance.

e A simple, robust model limits the FAR, so that it
may be extrapalated to very high confidence levels.

1.1. The Occam Factor

For each trigger, BayesLine estimates the evidence for
each of three models: signal, glitch, or noise. We can
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then construct the Bayes Factor comparing any two mod-
els as the ratio of supporting evidence. For example, the
Bayes Factor for data s comparing the signal (S) and
glitch (G) models is

_ p(s]9)
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The evidence for either model may be written as a
marginalization over the parameters of the model, h. For
example, for the signal model:

p(slS) = / p(slh, $)p(h|S)dh. @)

For signals with enough SNR to be strong candidates for
detections as Burst Signals (around SNR > 10) we expect
the integrand of Equation (2) to be strongly peaked at
the most likely parameter values of the waveform hyp.
If we take the peak to have an area oy|g in parameter
space, then, the integral may be approximated as

p(s|S) = p(s|hmp, S) x p(hnvp|S)on s = As x Os, (3)

where the first term represents the best fit likelihood for
the signal model (Ag), and the following term is known as
the Occam Factor (Og). The Occam Factor represents
the fraction of parameter space where the likelihood is
significantly high. In the parlance of the literature, this is
described as the posterior accessible volume as a fraction
of the prior accessible volume.

We may know write the signal-to-glitch Bayes Factor
in this approximation:
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Again limiting ourselves to the case of potential Burst
detection candidates (SNR > 10), we expect strong peaks
in the likelihood at the best fit waveform parameters. In
BayesWave, the signal model is described as a geocenter
collection of wavelets projected on to each detector in
the network, where the glitch model allows wavelets at
each detector that are independent of wavelets in other
detectors. This means that, as seen in the detectors, the
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allowed waveforms in the signal model are a subset of the
waveforms allowed in the glitch model. Since the glitch
model has more freedom to fit the data than the signal
model, it must be true that (Ag > Ag), which implies:

Os
Bsg < Oc’ (5)

For glitches that are not consistent with astrophysical
signals (i.e. look very different in different detectors),
Ag > Ag, and so the Bayes Factor will be much smaller
than the limit in equation 5. On the other hand, data
roughly consistent with some astrophysical waveform will
give Bsg ~ Og/Og, regardless of whether it was actually
caused by an astrophysical or local source. This means
that, for strong signal candidates, Bayeswave uses pri-
marily the Occam Factor to distinguish signals that are
very likely astrophysical from those that are consistent
with detector artifacts. For this reason, it is possible to
develop an expectation for the Bayes Factor associated
with certain types of signals by estimating the Occam
Factor alone.

1.2. Estimating the Occam Factor

We will make an estimate for the Occam Factors as-
sociated with signals observed by a two detector net-
work. For the moment, we will limit ourselves to
the case of a single wavelet in each detector. Then,
the glitch model has five parameters in each detec-
tor, for a total of ten parameters. Using subscripts
to denote detectors 1 and 2, we can write these as
(A1, for, Q1,to1, o1, A2, fo2, Q2,to2, ¢o2).  We choose
Detector 1 to be whichever detector has a higher SNR
signal.

For the signal model, five parameters are
used to construct the wavelet at the geocenter:
(A1, fo1,Q1,t01,P01). Since we chose Dectector 1 to
be where we see the higher SNR waveform, we can
expect the posterior volume for these parameters in the
signal model to be similar to the posterior volume of the
corresponding parameters in the glitch model. Then,
neglecting correlations between parameters, we can
expect terms related to these parameters to appear in
both the numerator and denominator when calculating
the ratio of Occam Factors in Equation 5, and so should
approximately cancel.

The signal model also uses four extrinsic parameters,
(0, ¢, €,v), which allow some freedom to choose how the
geocenter waveform will be projected onto Detector 2. In
particular, for the signal model, As, tg2, and ¢go are func-
tions of the extrinsic parameters. Given that both the
signal and glitch models have some freedom choose these
parameters, it seems a reasonable approximation that
the associated accessible volume fractions cancel from
Equation 5. This may not be a good approximation
in all cases, but should be reasonable for an order-of-
magnitude estimate.

On the other hand, the signal model gives no freedom
in choosing how the central frequency and quality factor
of the geocenter waveform will be projected onto Detec-
tor 2. So, the glitch model has two parameters with no
counterpart in the signal model: fyo and Q. In cases of
strong Burst candidate detections, we expect this extra
freedom in the glitch model waveform to dominate the

calculation of the Bayes Factor. For this special case of
strong candidates in a two detector network, we apply
this approximation to Equation 5

Os ! (6)
O¢ p(f02|G)Jf02p(Q2‘G)GQ2

where oy, and o, represent the posterior uncertainty
on the central frequency and quality factor of the glitch
in the Detector 2. Since BayesWave uses flat priors on
these parameters, p(fo2|G) = 1/Vy,,, where Vy,, is the
allowed range of fyo. Applying the same convention to
Q2, we write:

% ~ V52 VaQ, (7)

Oc 0 f020Q2
We see that the ratio of Occam Factors, then, is the
fraction of the {-Q plane where the signal in Detector 2
is consistent with the signal in Detector 1. This gives a
simple interpertation of this quantity. Given some glitch
in Detector 1, and a coincident glitch in Detector 2, the
Occam Factor quantifies the chances that the two glitches
will have matching parameters consistent with an astro-
physical signal. The calculation of this Occam Factor
is relatively robust against different glitch populations
- the main assumption is that glitches are created with
random central frequency and quality factor.

The qauntities o, and 0¢, represent the posterior un-
certainty on the corresponding parameters. In the high
SNR limit, we may approximate these values using the
diagonal terms of the Fisher Matrix for a Morlet-Gabor
waveform. These are given without proof in Shourov
Chatterji’s Ph.D. dissertation! (See Eqn 3.21):
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where A, fo, and Q represent the parameters of the wave-
form in the second detector.

As an example, we used BayesWave to recover injec-
tions of a single wavelet with fy = 153Hz and @ = 9.
We added these signals to real data from the LIGO H1
and L1 instruments collected during 2010. We used a
frequency range up to 512 Hz and Q = [0, 40]. For such
signals, we can calculate the expected Occam Factor us-
ing Equations (7) - (10):

O
In =2 ~ Ind7 + 21In A, (11)
Oc
This model is compared with the results using BayesWave
in Figure 1.

2. WHERE’S THE MAGIC?

Notice in Figure 1 and Equation (7) that the scaling
of In Bgg with SNR is relatively weak at high values -
the detection statistic has similar values at SNR 10 -
40. This is a robust feature of the model, and will be
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true both for glitches and for astrophysical signals. Since
even very high SNR signals give only a modest increase
in the expected value of the Bayes Factor, we might ask
what could be done to construct a signal with a very
high Bayes Factor. The answer is to create a signal with
a more complex structure that requires more than one
wavelet to model. Equation 7 may be extended to multi-
ple wavelets by taking a product of the Occum Factor for
each wavelet. In order to see how this scales, we imag-
ine each of N wavelets has a typical frequency, quality
factor, and amplitude of f,Q, and A, respectively:

% x |:A2VQVfo :| N
O¢ 2v/2 fo

Now it is clear that the detection statistic, In Bgq, scales
linearly with the number of wavelets, but has only a loga-
rithmic dependence on other parameters, including SNR.
In fact, Equation (12) is conservative, since parameters
like tgo will also increase the Occam Factor ratio. So,
in order to achieve a gold plated detection, BayesWave
requires a signal with complex time-frequency structure,
rather than a very loud signal. This is a significant dif-
ference from other Burst pipelines. In the next section,
we will show that even two wavelets is enough for a high
confidence detection in many cases, while a single wavelet
will almost always be plausibly explained by coincident
glitches. The fact that other pipelines fail to quantify
the importance of structure in forming their detection
statistic is the main reason that BayesWave can iden-
tify high confidence detections in the presence of loud
glitches, while other pipelines cannot.

In order to demonstrate this effect, we injected band-
limited white noise burst signals into archived LIGO
data. These signals have a time-frequency structure that
requires many wavelets to reconstruct. However, at low
SNR, only a fraction of the signal power can be recov-
ered. The result is that higher SNR signals require a
larger number of wavelets, and so we expect that the
Occum Factor will increase with increasing SNR. This
behavior is clearly seen in Figure 2.

(12)

3. BACKGROUND ESTIMATION

Equation 5 shows that, for strong Burst candidates, the
Occam factor provides a estimate for the Bayes Factor.
The fact that this estimate captures some features of
BayesWave is demonstrated in Figures 1 and 2. Now,
we see what implications this has for a population of
glitches.

For background estimation, the key feature of Equation
7 is that the Occam Factor represents the fraction of the
glitch model parameter space which is consistent with
the signal model. As a heuristic picture, imagine that
the waveform in Detector 1 is well represented by a single
wavelet with parameters fp; and Q1. Now imagine that
there is a coincident glitch in Detector 2. If the signal is
astrophysical in nature, the waveform in Detector 2 must
have parameters QQ2 and fpo that are consistent with fo;
and Qo1, within the measurement uncertainties o, and
0Q,- On the other hand, if the data represent coincident
glitches, then a priori there is no reason for the glitch
in Detector 2 to match the parameters in Detector 1.
Instead, the wavelet in Detector 2 is chosen at random,
and the Occum Factor quantifies the odds of selecting
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Figure 1. The signal-to-glitch Bayes Factor, as computed by
BayesWave, for simulated single wavelet signals. Also shown is
the estimate for the Occam Factor presented in this work. At high
SNR, the behavior of the Bayes Factor is broadly similar to expec-
tations for the simple model.
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Figure 2. Simulated white noise bursts, which require many

wavelets to reconstruct at high SNR. For comparison, the single
wavelet model of the Occum Factor is also shown. Notice that the
signals with complex time-frequency structure typically give Bayes
Factors which are much higher than the single wavelet estimate.

parameters that match Detector 1. It is as if we are
blindly throwing darts at the f-Q plane, and hoping to
hit a target of size os, by 0g,. “Missing the target”
means the glitch in Detector 2 is not consistent with the
signal model, and so the signal model likelihood will be
lower than the glitch model likelihood, thus reducing the
value of the Bayes Factor well below the limit in Equation
5, and so rejecting the event as a glitch.

This interpertation has an important implication for
the background rate. Let’s assume, in a given two de-
tector data set, there are Ny coincident glitches. We
can use the interpertation of the Occam Factor to place
a limit on the expectation value of the detection statis-
tic for the loudest false alarm in the data set. Glitches
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with low values of the Occam Factor will also have low
values of the detection statistic, as seen in Equation 5.
However, glitches with a high value of the Occam Factor
have a high probability of “missing the target”, and so
will more often acquire low likelihood and whence low
Bayes Factor. Then, in order to maximize the expecta-
tion value of the Bayes Factor of the loudest background
event, the “worst case scenario” would be if all of the
glitches had an Occam Factor at the maximum value,
such that one glitch on average would be consistent with
a true gravitational wave. In this limiting case, the ex-
pectation value for the Bayes Factor of the loudest event
would be equal to the number of coincident glitches.

<Bg‘/1é«xx> < Ngl (13)

Notice this limit is not a statement about the population
of glitches, beyond the assumption that the parameters
fo and @ are chosen at random for glitches in each de-
tector. If glitches exist in the population which have an
Occam Factor greater than the limit in 13, the expecta-
tion is that none of them will have parameters consistent
with the signal model. It is also important to point out
this is a conservative estimate. Most glitches are at low
SNR in any realistic glitch population, and so low values
of the Occam Factor will likely be much more common
than high values. Notice, also, that this limit could be
applied equally well to a population of truly coincident
glitches or a to a population of glitches found to be co-
incident in a number of timeslides. In this way, it could
be used to set a “five-sigma” detection threshold for any
data set.

To see how this could work in practice, we must set a
single parameter based on our knowledge of the detec-
tors. This is the rate of coincident glitches, Ry. Fortu-
nately, this rate is carefully studied within LIGO. The
single detector glitch rate is known to typically have val-
ues between 1 and 0.1 Hz (See S6 detchar paper, LIGO-
P1000142). The light travel time between LIGO detec-
tors is 10 ms, leading to a coincident glitch rate of Ry ~ 1
Hzx1 Hzx0.01 s = 0.01Hz.

As an example, imagine an early run of the Advanced
LIGO detectors. Such a run might last for around three
months. A so-called “three sigma” detection requires
an event louder than the expected background in ~ 300
time slides. This means the background data would

have 75 years of livetime, and Ny ~ 2 x 107. Equa-

tion 13 then suggests that events with In Bg/[GAX ~ 16

would be marginally detectable. This is similar to the
Bayes Factors for the single wavelet injections in Fig-
ure 1. The conclusion, then, is that with a two detec-
tor network, single wavelet signals are marginally de-
tectable with BayesWave at any reasonable SNR value.
This is very similar to the performance seen in past Burst
searches with a two detector network.

On the other hand, what is required for a “five-sigma”
detection? For this case, we seek a p-value of less than
3 x 1077, and so demand our event be louder than the
loudest event in 3 x 10% time slides. For our hypothet-

ical three month observing window, this leads to Ng; ~

2 x 101, for an expected loudest event In BY4X ~ 26.

We have already seen that single wavelet events can not
reach this level at any reasonable SNR. However, apply-
ing the scaling law in Equation (12), we find that such
a “gold-plated” detection could be achieved at reason-

able SNR with as few as two or three wavelets. This is
an important feature of the BayesWave pipeline that is
distinct from other Burst detection schemes: gold-plated
detections are possible even in the presence of a signifi-
cant glitch population.

An equivalent interpertation of Equation (13) is to use
the glitch rate to set a Bayesian prior on the glitch model,
and then use the posterior to express our confidence in a
signal candidate. A simliar approach was used by [James
Clark thesis, I think]. The glitch rate expresses our prior
belief in the chances that a stretch of gravitational wave
data will contain a glitch. While we could use knowledge
of astrophysics to set the prior on the signal model, a rea-
sonable guess at this stage is that any observation period
contains ~ 1 true gravitational wave signal. After all, if
the rate was higher, we would have already seen one. If
we really believed the rate was much lower, then there is
no reason to analyze the data. We can the calculate the

posterior as
p(S[s) 1

p(Gls)  Rgl

Bsa (14)

where L is the livetime of the network. In the limit of
strong candidates, equation 13 will make this description
equivalent to the frequentist scheme described above.

In order to validate Equation 13, it would be natural
to study the performance of BayesWave on a number of
background time-slides. In general, it would be prudent
to do this on future data sets. In fact, in most cases we
expect Bg/lc‘?x to be less than the limit, so performing
time-slide analysis may actually allow a lower detection
threshold. Here, as a demonstration, we show the per-
formance of BayesWave on a collection of the loudest one
hundered coherentWaveBurst (cWB) triggers from the
two detector S6D analysis. This can be seen in Figure
3. The S6D ¢WB background study used 300 timeslides
on 27 days of livetime, for a total of 22 years of live-
time in the background set. The loudest event in this
background set has a BayesWave detection statistic of
In Bsg = 12. The conservative limit in Equation (13)
predicts this value will be less than 15.7.

For comparison, we also run a simplistic simulation,
where we draw simulated glitches from ad hoc popula-
tions, compute the Occum Factor using Equation (12),
and then reject glitches with with probablity Og/Og.
We use a population of single wavelet glitches with SNRs
chosen randomly between 1 and 50, SNRs randomly cho-
sen between 1 and 1000, and a population where half the
glitches have one wavelet and half have two wavelets,
with SNRs randomly chosen between 1 and 50. The re-
sults are that all of these populations have a loudest event
with 11 < In Bgg < 13. This highlights that the limit
for the loudest event in Equation (13) is relatively robust
to different glitch populations.

TEST (Sutton 2009) (Mackay 2003)
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Figure 3. The resutls of time-slides studie using BayesWave and
the S6D data set are shown as the blue trace. For comparison, a
simplistic simulation using several hypothetical glitch populations
is shown in other colors. The black, vertical line shows the ex-
pected value for the loudest event using the limit in Equation 13.
In all cases, both real and simulated, the loudest event is seen to be
between 10 and 13 in the detection statistic, all below the expected
limit of 15.7. Since this represents 300 timeslides of the data set,
we see that essentially all of the sine-gaussian injections above net-
work SNR 10 were marginally detected, as were most WNB above
network SNR 20. Moreover, most WNBs above network SNR 25
were “gold-plated” detections. These resutls are consistent with
expectations described in this work.



