Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
gstlal
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Duncan Macleod
gstlal
Commits
1f8da459
Commit
1f8da459
authored
6 years ago
by
Chad Hanna
Browse files
Options
Downloads
Patches
Plain Diff
gstlal_inspiral_mass_model: add a ligo model
parent
4a022652
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
gstlal-inspiral/bin/gstlal_inspiral_mass_model
+33
-15
33 additions, 15 deletions
gstlal-inspiral/bin/gstlal_inspiral_mass_model
with
33 additions
and
15 deletions
gstlal-inspiral/bin/gstlal_inspiral_mass_model
+
33
−
15
View file @
1f8da459
...
...
@@ -32,28 +32,34 @@ from lal import rate
class
LIGOLWContentHandler
(
ligolw
.
LIGOLWContentHandler
):
pass
def
chirpmass
(
m1
,
m2
):
return
(
m1
*
m2
)
**
.
6
/
(
m1
+
m2
)
**
.
2
parser
=
argparse
.
ArgumentParser
(
description
=
"
Create analytic mass models for prior weighting of templates
"
)
parser
.
add_argument
(
"
--template-bank
"
,
metavar
=
'
name
'
,
type
=
str
,
help
=
'
The input template bank file name.
'
,
required
=
True
)
parser
.
add_argument
(
"
--output
"
,
metavar
=
'
name
'
,
type
=
str
,
help
=
'
The output file name
'
,
default
=
"
inspiral_mass_model.h5
"
)
parser
.
add_argument
(
"
--model
"
,
metavar
=
'
name
'
,
type
=
str
,
help
=
'
Mass model. Options are: salpeter. If you want another one, submit a patch.
'
)
parser
.
add_argument
(
"
--model
"
,
metavar
=
'
name
'
,
type
=
str
,
help
=
'
Mass model. Options are: salpeter
, ligo
. If you want another one, submit a patch.
'
)
parser
.
add_argument
(
"
--verbose
"
,
help
=
'
Be verbose
'
,
action
=
"
store_true
"
)
options
=
parser
.
parse_args
()
# Read the template bank file
xmldoc
=
ligolw_utils
.
load_filename
(
options
.
template_bank
,
verbose
=
options
.
verbose
,
contenthandler
=
LIGOLWContentHandler
)
sngl_inspiral_table
=
lsctables
.
SnglInspiralTable
.
get_table
(
xmldoc
)
mass1
=
sngl_inspiral_table
.
get_column
(
"
mass1
"
)
mass2
=
sngl_inspiral_table
.
get_column
(
"
mass2
"
)
num_templates
=
len
(
mass1
)
num_bins
=
max
(
2
,
int
((
num_templates
/
100.
)
**
.
5
))
min_mass
=
min
(
min
(
mass1
),
min
(
mass2
))
-
1.e-6
max_mass
=
max
(
max
(
mass1
),
max
(
mass2
))
+
1.e-6
massBA
=
rate
.
BinnedDensity
(
rate
.
NDBins
((
rate
.
LogarithmicBins
(
min_mass
,
max_mass
,
num_bins
),
rate
.
LogarithmicBins
(
min_mass
,
max_mass
,
num_bins
))))
print
min_mass
,
max_mass
for
m1
,
m2
in
zip
(
mass1
,
mass2
):
massBA
.
count
[(
m1
,
m2
)]
+=
1
massBA
.
count
[(
m2
,
m1
)]
+=
1
rate
.
filter_array
(
massBA
.
array
,
rate
.
gaussian_window
(
1.5
,
1.5
,
sigma
=
5
))
#
# Someday if noise is actually a pdf in mass this might matter
#
# mass1 = sngl_inspiral_table.get_column("mass1")
# mass2 = sngl_inspiral_table.get_column("mass2")
# num_templates = len(mass1)
# num_bins = max(2, int((num_templates / 100.)**.5))
# min_mass = min(min(mass1), min(mass2)) - 1.e-6
# max_mass = max(max(mass1), max(mass2)) + 1.e-6
# massBA = rate.BinnedDensity(rate.NDBins((rate.LogarithmicBins(min_mass, max_mass, num_bins), rate.LogarithmicBins(min_mass, max_mass, num_bins))))
# for m1, m2 in zip(mass1, mass2):
# massBA.count[(m1, m2)] += 1
# massBA.count[(m2, m1)] += 1
# rate.filter_array(massBA.array, rate.gaussian_window(1.5, 1.5, sigma = 5))
# Assign the proper mass probabilities
ids
=
{}
...
...
@@ -61,14 +67,26 @@ tmplt_ids = []
for
row
in
sngl_inspiral_table
:
assert
row
.
template_id
not
in
ids
tmplt_ids
.
append
(
int
(
row
.
template_id
))
primary
=
max
(
row
.
mass1
,
row
.
mass2
)
if
options
.
model
==
"
salpeter
"
:
ids
[
row
.
template_id
]
=
numpy
.
log
(
row
.
mass1
**-
2.35
/
massBA
[
row
.
mass1
,
row
.
mass2
])
ids
[
row
.
template_id
]
=
primary
**-
2.35
# / massBA[row.mass1, row.mass2]
elif
options
.
model
==
"
ligo
"
:
# assume a 0.15 solar mass std deviation, this should capture both population distribution and snr effects
sigma
=
0.15
mean
=
1.2
bnsprob
=
1.
/
(
2
*
numpy
.
pi
*
sigma
**
2
)
**
.
5
*
numpy
.
exp
(
-
(
chirpmass
(
row
.
mass1
,
row
.
mass2
)
-
mean
)
**
2
/
2.
/
sigma
**
2
)
# normalised over 5 -- 45 Msun
bbhprob
=
0.46
*
primary
**-
1.6
# From: https://www.lsc-group.phys.uwm.edu/ligovirgo/cbcnote/RatesAndSignificance/O1O2CatalogRates
bns_to_bbh_rate
=
916.
/
56.
ids
[
row
.
template_id
]
=
(
bns_to_bbh_rate
*
bnsprob
+
bbhprob
)
# / massBA[row.mass1, row.mass2]
else
:
raise
ValueError
(
"
Invalid mass model
"
)
norm
=
sum
(
ids
.
values
())
coefficients
=
numpy
.
zeros
((
1
,
1
,
max
(
ids
)
+
1
),
dtype
=
float
)
for
tid
in
ids
:
coefficients
[
0
,
0
,
tid
]
=
ids
[
tid
]
coefficients
[
0
,
0
,
tid
]
=
numpy
.
log
(
ids
[
tid
]
/
norm
*
len
(
sngl_inspiral_table
))
# Write it out
f
=
h5py
.
File
(
options
.
output
,
"
w
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment