Skip to content
Snippets Groups Projects
Commit 7a5f430d authored by Chad Hanna's avatar Chad Hanna
Browse files

inspiral_extrinsics: add compression to the hdf5 output and remove scipys tukey window

parent b8d9c65f
No related branches found
No related tags found
No related merge requests found
......@@ -40,7 +40,6 @@ import numpy
import os
import random
from scipy import stats
import scipy, scipy.signal
import sys
import h5py
......@@ -1307,19 +1306,19 @@ class DynamicBins(object):
dgrp = f.create_group("dynbins")
begroup = dgrp.create_group("bin_edges")
for i, bin_edge in enumerate(self.bin_edges):
begroup.create_dataset("%d" % i, data = bin_edge)
begroup.create_dataset("%d" % i, data = bin_edge, compression="gzip")
dgrp.attrs["num_points"] = self.num_points
dgrp.attrs["total_prob"] = self.total_prob
dgrp.attrs["num_cells"] = self.num_cells
bgrp = f.create_group("bins")
lower, upper, parent, right, left, prob = self.__serialize()
bgrp.create_dataset("lower", data = lower)
bgrp.create_dataset("upper", data = upper)
bgrp.create_dataset("parent", data = parent)
bgrp.create_dataset("right", data = right)
bgrp.create_dataset("left", data = left)
bgrp.create_dataset("prob", data = prob)
bgrp.create_dataset("lower", data = lower, compression="gzip")
bgrp.create_dataset("upper", data = upper, compression="gzip")
bgrp.create_dataset("parent", data = parent, compression="gzip")
bgrp.create_dataset("right", data = right, compression="gzip")
bgrp.create_dataset("left", data = left, compression="gzip")
bgrp.create_dataset("prob", data = prob, compression="gzip")
#
......@@ -1366,6 +1365,9 @@ class IFFT(object):
return numpy.array(self.tvec[length].data, dtype=float)
def tukeywindow(data, alpha = 0.25):
return lal.CreateTukeyREAL8Window(len(data), alpha).data.data
class RandomSource(object):
def __init__(self, horizons, snr_thresh = 4):
......@@ -1480,7 +1482,7 @@ class RandomSource(object):
ASD = (10**self.psd_poly(F(mchirp, t)))**.5
return (PI * M * F(mchirp, t) / ASD)**(2./3.)
w = scipy.signal.tukey(len(self.t), alpha = 0.25) * A(mchirp, self.t) * numpy.cos(PHI(mchirp, self.t, phi))
w = tukeywindow(self.t, alpha = 0.25) * A(mchirp, self.t) * numpy.cos(PHI(mchirp, self.t, phi))
return w / self.match(w,w)**.5
def noise(self):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment