Skip to content
Snippets Groups Projects
Commit 9b6a5a94 authored by Kipp Cannon's avatar Kipp Cannon
Browse files

horizonhistory: adjustments

- introduce .functional_integral() methods to both NearestLeafTree and
  HorizonHistories classes
- reimplement .weighted_mean() as a wrapper of .functional_integral().
  this results in a performance penalty since it must invoke
  .functional_integral() twice but avoids the code duplication that would
  result otherwise
- allow 0/0 in .weighted_mean().  if the numerator of the mean is
  identically 0 and the weighted denominator has also evaluated to 0 then
  return 0 instead of reporting a divide-by-0 error.  this is done
  presuming that this is caused by the weight function being defined in a
  way that causes it to go to 0 when the data being averaged goes to 0 and
  that if a proper limit of the ratio was evaluated it would be found to be
  0.
parent 2174ad35
No related branches found
No related tags found
No related merge requests found
......@@ -293,25 +293,37 @@ class NearestLeafTree(object):
def __repr__(self):
return "NearestLeaftree([%s])" % ", ".join("(%g, %g)" % item for item in self.tree)
def weighted_mean(self, (lo, hi), weight = lambda y: 1.):
def functional_integral(self, (lo, hi), w = lambda f: f):
"""
Given the function f(x) = self[x], compute
\int_{lo}^{hi} w(f(x)) f(x) dx
------------------------------
\int_{lo}^{hi} w(f(x)) dx
\int_{lo}^{hi} w(f(x)) dx
where w(y) is a weighting function. The default weight
function is w(y) = 1.
The arguments are the lo and hi bounds and the functional
w(f). The default functional is w(f) = f.
Example:
>>> x = NearestLeafTree([(100., 0.), (150., 2.), (200., 0.)])
>>> x.functional_integral((130., 170.))
80.0
>>> x.functional_integral((100., 150.))
50.0
>>> x.functional_integral((300., 500.))
0.0
>>> x.functional_integral((100., 150.), lambda f: f**3)
200.0
"""
if not self.tree:
raise ValueError("empty tree")
if lo > hi:
# remove a common factor of -1 from the numerator
# and denominator
lo, hi = hi, lo
if lo < hi:
swapped = False
elif lo == hi:
return self[lo]
return NaN if math.isinf(w(self[lo])) else 0.
else:
# lo > hi. remove a factor of -1 from the integral
lo, hi = hi, lo
swapped = True
# now we are certain that lo < hi and that there is at
# least one entry in the tree
......@@ -335,9 +347,52 @@ class NearestLeafTree(object):
samples.append((hi, self[hi]))
else:
samples[-1] = hi, self[hi]
# return the integral
result = sum((b_key - a_key) * w(a_val) for (a_key, a_val), (b_key, b_val) in zip(samples[:-1], samples[1:]))
return -result if swapped else result
def weighted_mean(self, (lo, hi), weight = lambda y: 1.):
"""
Given the function f(x) = self[x], compute
\int_{lo}^{hi} w(f(x)) f(x) dx
------------------------------
\int_{lo}^{hi} w(f(x)) dx
where w(y) is a weighting function. The default weight
function is w(y) = 1.
If the numerator is identically 0 and the denominator is
also 0 then a value of 0 is returned rather than raising a
divide-by-0 error.
Example:
>>> x = NearestLeafTree([(100., 0.), (150., 2.), (200., 0.)])
>>> x.weighted_mean((130., 170.))
2.0
>>> x.weighted_mean((100., 150.))
1.0
>>> x.weighted_mean((300., 500.))
0.0
>>> x.weighted_mean((100., 150.), lambda x: x**3)
2.0
"""
if not self.tree:
raise ValueError("empty tree")
if lo > hi:
# remove a common factor of -1 from the numerator
# and denominator
lo, hi = hi, lo
elif lo == hi:
return self[lo]
# now we are certain that lo < hi and that there is at
# least one entry in the tree
# return the ratio of the two integrals
samples = [((b_key - a_key) * weight(a_val), a_val) for (a_key, a_val), (b_key, b_val) in zip(samples[:-1], samples[1:])]
return sum(w * val for w, val in samples) / sum(w for w, val in samples)
num = self.functional_integral((lo, hi), lambda f: weight(f) * f)
den = self.functional_integral((lo, hi), weight)
return num / den if num or den else 0.0
@classmethod
def from_xml(cls, xml, name):
......@@ -409,6 +464,16 @@ class HorizonHistories(dict):
# dictionaries
return map(dict, result)
def functional_integral(self, *args, **kwargs):
"""
Return a dictionary of the result of invoking
.functional_integral() on each of the histories. args and
kwargs are passed to the .functional_integral() method of
the histories objects, see their documentation for more
information.
"""
return dict((key, value.functional_integral(*args, **kwargs)) for key, value in self.items())
def weighted_mean(self, *args, **kwargs):
"""
Return a dictionary of the result of invoking
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment