Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
gstlal
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Duncan Macleod
gstlal
Commits
ca55c845
Commit
ca55c845
authored
5 years ago
by
Daichi Tsuna
Browse files
Options
Downloads
Patches
Plain Diff
cs_triggergen: add amplitude calculation & less PSD updates
parent
b5b3a1cf
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
gstlal-burst/bin/gstlal_cs_triggergen
+128
-87
128 additions, 87 deletions
gstlal-burst/bin/gstlal_cs_triggergen
with
128 additions
and
87 deletions
gstlal-burst/bin/gstlal_cs_triggergen
+
128
−
87
View file @
ca55c845
...
...
@@ -81,11 +81,35 @@ options, filenames = parse_command_line()
# handler for obtaining psd
#
class
PSDHandler
(
simplehandler
.
Handler
):
def
__init__
(
self
,
mainloop
,
pipeline
,
firbank
):
simplehandler
.
Handler
.
__init__
(
self
,
mainloop
,
pipeline
)
class
PipelineHandler
(
simplehandler
.
Handler
):
def
__init__
(
self
,
mainloop
,
pipeline
,
template_bank
,
firbank
):
simplehandler
.
Handler
.
__init__
(
self
,
mainloop
,
pipeline
)
self
.
template_bank
=
template_bank
self
.
firbank
=
firbank
self
.
triggergen
=
triggergen
# use central_freq to uniquely identify templates
self
.
sigma
=
dict
((
row
.
central_freq
,
0.0
)
for
row
in
template_bank
)
# counter for controlling how often we update PSD
self
.
update_psd
=
0
def
appsink_new_buffer
(
self
,
elem
):
buf
=
elem
.
emit
(
"
pull-sample
"
).
get_buffer
()
events
=
[]
for
i
in
range
(
buf
.
n_memory
()):
memory
=
buf
.
peek_memory
(
i
)
result
,
mapinfo
=
memory
.
map
(
Gst
.
MapFlags
.
READ
)
assert
result
if
mapinfo
.
data
:
events
.
extend
(
snglbursttable
.
GSTLALSnglBurst
.
from_buffer
(
mapinfo
.
data
))
memory
.
unmap
(
mapinfo
)
# put info of each event in the sngl burst table
for
event
in
events
:
event
.
process_id
=
process
.
process_id
event
.
event_id
=
sngl_burst_table
.
get_next_id
()
event
.
amplitude
=
event
.
snr
/
self
.
sigma
[
event
.
central_freq
]
sngl_burst_table
.
append
(
event
)
# event counter
search_summary
.
nevents
+=
1
def
do_on_message
(
self
,
bus
,
message
):
if
message
.
type
==
Gst
.
MessageType
.
ELEMENT
and
message
.
get_structure
().
get_name
()
==
"
spectrum
"
:
...
...
@@ -95,73 +119,87 @@ class PSDHandler(simplehandler.Handler):
stability
=
float
(
message
.
src
.
get_property
(
"
n-samples
"
))
/
message
.
src
.
get_property
(
"
average-samples
"
)
if
stability
>
0.3
:
print
>>
sys
.
stderr
,
"
At GPS time
"
,
timestamp
,
"
PSD stable
"
template_t
=
[
None
]
*
len
(
template_bank_table
)
autocorr
=
[
None
]
*
len
(
template_bank_table
)
# make templates, whiten, put into firbank
for
i
,
row
in
enumerate
(
template_bank_table
):
# linearly polarized, so just use plus mode time series
template_t
[
i
],
_
=
lalsimulation
.
GenerateStringCusp
(
1.0
,
row
.
central_freq
,
1.0
/
options
.
sample_rate
)
# zero-pad it to 32 seconds to obtain same deltaF as the PSD
template_t
[
i
]
=
lal
.
ResizeREAL8TimeSeries
(
template_t
[
i
],
-
int
(
32
*
options
.
sample_rate
-
template_t
[
i
].
data
.
length
)
//
2
,
int
(
32
*
options
.
sample_rate
))
# setup of frequency domain
length
=
template_t
[
i
].
data
.
length
duration
=
float
(
length
)
/
options
.
sample_rate
epoch
=
-
(
length
-
1
)
//
2
/
options
.
sample_rate
template_f
=
lal
.
CreateCOMPLEX16FrequencySeries
(
"
template_freq
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
duration
,
lal
.
Unit
(
"
strain s
"
),
length
//
2
+
1
)
fplan
=
lal
.
CreateForwardREAL8FFTPlan
(
length
,
0
)
# FFT to frequency domain
lal
.
REAL8TimeFreqFFT
(
template_f
,
template_t
[
i
],
fplan
)
# set DC and Nyquist to zero
template_f
.
data
.
data
[
0
]
=
0.0
template_f
.
data
.
data
[
template_f
.
data
.
length
-
1
]
=
0.0
# whiten
template_f
=
lal
.
WhitenCOMPLEX16FrequencySeries
(
template_f
,
psd
)
# obtain autocorr time series by squaring template and inverse FFT it
template_f_squared
=
lal
.
CreateCOMPLEX16FrequencySeries
(
"
whitened template_freq squared
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
duration
,
lal
.
Unit
(
"
s
"
),
length
//
2
+
1
)
autocorr_t
=
lal
.
CreateREAL8TimeSeries
(
"
autocorr_time
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
options
.
sample_rate
,
lal
.
Unit
(
"
strain
"
),
length
)
rplan
=
lal
.
CreateReverseREAL8FFTPlan
(
length
,
0
)
template_f_squared
.
data
.
data
=
abs
(
template_f
.
data
.
data
)
**
2
lal
.
REAL8FreqTimeFFT
(
autocorr_t
,
template_f_squared
,
rplan
)
# normalize autocorrelation by central (maximum) value
autocorr_t
.
data
.
data
/=
numpy
.
max
(
autocorr_t
.
data
.
data
)
autocorr_t
=
autocorr_t
.
data
.
data
max_index
=
numpy
.
argmax
(
autocorr_t
)
# find the index of the third extremum for the template with lowest high-f cutoff.
# we do this because we know that the template with the lowest high-f cutoff will have
# the largest chi2_index.
if
i
==
0
:
extr_ctr
=
0
chi2_index
=
0
for
j
in
range
(
max_index
+
1
,
len
(
autocorr_t
)):
slope1
=
autocorr_t
[
j
+
1
]
-
autocorr_t
[
j
]
slope0
=
autocorr_t
[
j
]
-
autocorr_t
[
j
-
1
]
chi2_index
+=
1
if
(
slope1
*
slope0
<
0
):
extr_ctr
+=
1
if
(
extr_ctr
==
2
):
break
assert
extr_ctr
==
2
,
'
could not find 3rd extremum
'
# extract the part within the third extremum, setting the peak to be the center.
autocorr
[
i
]
=
numpy
.
concatenate
((
autocorr_t
[
1
:(
chi2_index
+
1
)][::
-
1
],
autocorr_t
[:(
chi2_index
+
1
)]))
assert
len
(
autocorr
[
i
])
%
2
==
1
,
'
autocorr must have odd number of samples
'
# Inverse FFT template bank back to time domain
template_t
[
i
]
=
lal
.
CreateREAL8TimeSeries
(
"
whitened template time
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
options
.
sample_rate
,
lal
.
Unit
(
"
strain
"
),
length
)
lal
.
REAL8FreqTimeFFT
(
template_t
[
i
],
template_f
,
rplan
)
# normalize
template_t
[
i
].
data
.
data
/=
numpy
.
sqrt
(
numpy
.
dot
(
template_t
[
i
].
data
.
data
,
template_t
[
i
].
data
.
data
))
template_t
[
i
]
=
template_t
[
i
].
data
.
data
firbank
.
set_property
(
"
latency
"
,
-
(
len
(
template_t
[
0
])
-
1
)
//
2
)
firbank
.
set_property
(
"
fir_matrix
"
,
template_t
)
triggergen
.
set_property
(
"
autocorrelation_matrix
"
,
autocorr
)
self
.
firbank
=
firbank
self
.
triggergen
=
triggergen
if
self
.
update_psd
>
0
:
# do nothing, just decrease the counter
self
.
update_psd
-=
1
else
:
# PSD counter reached zero
print
>>
sys
.
stderr
,
"
At GPS time
"
,
timestamp
,
"
updating PSD
"
# NOTE this initialization determines how often the PSD gets updated. This should be given by the user, or we can think of other fancier updates.
self
.
update_psd
=
10
template_t
=
[
None
]
*
len
(
self
.
template_bank
)
autocorr
=
[
None
]
*
len
(
self
.
template_bank
)
# make templates, whiten, put into firbank
# FIXME Currently works only for cusps. this for-loop needs to be revisited when searching for other sources (kinks, ...)
for
i
,
row
in
enumerate
(
self
.
template_bank
):
# Obtain cusp waveform. A cusp signal is linearly polarized, so just use plus mode time series
template_t
[
i
],
_
=
lalsimulation
.
GenerateStringCusp
(
1.0
,
row
.
central_freq
,
1.0
/
options
.
sample_rate
)
# zero-pad it to 32 seconds to obtain same deltaF as the PSD
template_t
[
i
]
=
lal
.
ResizeREAL8TimeSeries
(
template_t
[
i
],
-
int
(
32
*
options
.
sample_rate
-
template_t
[
i
].
data
.
length
)
//
2
,
int
(
32
*
options
.
sample_rate
))
# setup of frequency domain
length
=
template_t
[
i
].
data
.
length
duration
=
float
(
length
)
/
options
.
sample_rate
epoch
=
-
(
length
-
1
)
//
2
/
options
.
sample_rate
template_f
=
lal
.
CreateCOMPLEX16FrequencySeries
(
"
template_freq
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
duration
,
lal
.
Unit
(
"
strain s
"
),
length
//
2
+
1
)
fplan
=
lal
.
CreateForwardREAL8FFTPlan
(
length
,
0
)
# FFT to frequency domain
lal
.
REAL8TimeFreqFFT
(
template_f
,
template_t
[
i
],
fplan
)
# set DC and Nyquist to zero
template_f
.
data
.
data
[
0
]
=
0.0
template_f
.
data
.
data
[
template_f
.
data
.
length
-
1
]
=
0.0
# whiten
assert
template_f
.
deltaF
==
psd
.
deltaF
,
"
freq interval not same between template and PSD
"
template_f
=
lal
.
WhitenCOMPLEX16FrequencySeries
(
template_f
,
psd
)
# Obtain the normalization for getting the amplitude of signal from SNR
# Integrate over frequency range covered by template. Note that template_f is already whitened.
sigmasq
=
0.0
sigmasq
=
numpy
.
trapz
(
4.0
*
template_f
.
data
.
data
**
2
,
dx
=
psd
.
deltaF
)
self
.
sigma
[
row
.
central_freq
]
=
numpy
.
sqrt
(
sigmasq
.
real
)
# obtain autocorr time series by squaring template and inverse FFT it
template_f_squared
=
lal
.
CreateCOMPLEX16FrequencySeries
(
"
whitened template_freq squared
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
duration
,
lal
.
Unit
(
"
s
"
),
length
//
2
+
1
)
autocorr_t
=
lal
.
CreateREAL8TimeSeries
(
"
autocorr_time
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
options
.
sample_rate
,
lal
.
Unit
(
"
strain
"
),
length
)
rplan
=
lal
.
CreateReverseREAL8FFTPlan
(
length
,
0
)
template_f_squared
.
data
.
data
=
abs
(
template_f
.
data
.
data
)
**
2
lal
.
REAL8FreqTimeFFT
(
autocorr_t
,
template_f_squared
,
rplan
)
# normalize autocorrelation by central (maximum) value
autocorr_t
.
data
.
data
/=
numpy
.
max
(
autocorr_t
.
data
.
data
)
autocorr_t
=
autocorr_t
.
data
.
data
max_index
=
numpy
.
argmax
(
autocorr_t
)
# find the index of the third extremum for the template with lowest high-f cutoff.
# we don't want to do this for all templates, because we know that
# the template with the lowest high-f cutoff will have the largest chi2_index.
if
i
==
0
:
extr_ctr
=
0
chi2_index
=
0
for
j
in
range
(
max_index
+
1
,
len
(
autocorr_t
)):
slope1
=
autocorr_t
[
j
+
1
]
-
autocorr_t
[
j
]
slope0
=
autocorr_t
[
j
]
-
autocorr_t
[
j
-
1
]
chi2_index
+=
1
if
(
slope1
*
slope0
<
0
):
extr_ctr
+=
1
if
(
extr_ctr
==
2
):
break
assert
extr_ctr
==
2
,
'
could not find 3rd extremum
'
# extract the part within the third extremum, setting the peak to be the center.
autocorr
[
i
]
=
numpy
.
concatenate
((
autocorr_t
[
1
:(
chi2_index
+
1
)][::
-
1
],
autocorr_t
[:(
chi2_index
+
1
)]))
assert
len
(
autocorr
[
i
])
%
2
==
1
,
'
autocorr must have odd number of samples
'
# Inverse FFT template bank back to time domain
template_t
[
i
]
=
lal
.
CreateREAL8TimeSeries
(
"
whitened template time
"
,
LIGOTimeGPS
(
epoch
),
psd
.
f0
,
1.0
/
options
.
sample_rate
,
lal
.
Unit
(
"
strain
"
),
length
)
lal
.
REAL8FreqTimeFFT
(
template_t
[
i
],
template_f
,
rplan
)
# normalize
template_t
[
i
].
data
.
data
/=
numpy
.
sqrt
(
numpy
.
dot
(
template_t
[
i
].
data
.
data
,
template_t
[
i
].
data
.
data
))
template_t
[
i
]
=
template_t
[
i
].
data
.
data
firbank
.
set_property
(
"
latency
"
,
-
(
len
(
template_t
[
0
])
-
1
)
//
2
)
firbank
.
set_property
(
"
fir_matrix
"
,
template_t
)
triggergen
.
set_property
(
"
autocorrelation_matrix
"
,
autocorr
)
self
.
firbank
=
firbank
self
.
triggergen
=
triggergen
else
:
# use templates with all zeros during burn-in period, that way we won't get any triggers.
print
>>
sys
.
stderr
,
"
At GPS time
"
,
timestamp
,
"
burn in period
"
template
=
[
None
]
*
len
(
template_bank
_table
)
autocorr
=
[
None
]
*
len
(
template_bank
_table
)
for
i
,
row
in
enumerate
(
template_bank
_table
):
template
=
[
None
]
*
len
(
self
.
template_bank
)
autocorr
=
[
None
]
*
len
(
self
.
template_bank
)
for
i
,
row
in
enumerate
(
self
.
template_bank
):
template
[
i
],
_
=
lalsimulation
.
GenerateStringCusp
(
1.0
,
30
,
1.0
/
options
.
sample_rate
)
template
[
i
]
=
lal
.
ResizeREAL8TimeSeries
(
template
[
i
],
-
int
(
32
*
options
.
sample_rate
-
template
[
i
].
data
.
length
)
//
2
,
int
(
32
*
options
.
sample_rate
))
template
[
i
]
=
template
[
i
].
data
.
data
...
...
@@ -252,6 +290,23 @@ process = ligolw_process.register_to_xmldoc(xmldoc, "StringSearch", options.__di
sngl_burst_table
=
lsctables
.
New
(
lsctables
.
SnglBurstTable
,
[
"
process:process_id
"
,
"
event_id
"
,
"
ifo
"
,
"
search
"
,
"
channel
"
,
"
start_time
"
,
"
start_time_ns
"
,
"
peak_time
"
,
"
peak_time_ns
"
,
"
duration
"
,
"
central_freq
"
,
"
bandwidth
"
,
"
amplitude
"
,
"
snr
"
,
"
confidence
"
,
"
chisq
"
,
"
chisq_dof
"
])
xmldoc
.
childNodes
[
-
1
].
appendChild
(
sngl_burst_table
)
#
# append search_summary table
# nevents will be filled out later
#
search_summary_table
=
lsctables
.
New
(
lsctables
.
SearchSummaryTable
,
[
"
process:process_id
"
,
"
comment
"
,
"
ifos
"
,
"
in_start_time
"
,
"
in_start_time_ns
"
,
"
in_end_time
"
,
"
in_end_time_ns
"
,
"
out_start_time
"
,
"
out_start_time_ns
"
,
"
out_end_time
"
,
"
out_end_time_ns
"
,
"
nevents
"
,
"
nnodes
"
])
xmldoc
.
childNodes
[
-
1
].
appendChild
(
search_summary_table
)
search_summary
=
lsctables
.
SearchSummary
()
search_summary
.
process_id
=
process
.
process_id
if
options
.
user_tag
:
search_summary
.
comment
=
options
.
user_tag
search_summary
.
ifos
=
template_bank_table
[
0
].
ifo
search_summary
.
out_start
=
search_summary
.
in_start
=
LIGOTimeGPS
(
options
.
gps_start_time
)
search_summary
.
out_end
=
search_summary
.
in_end
=
LIGOTimeGPS
(
options
.
gps_end_time
)
search_summary
.
nnodes
=
1
search_summary
.
nevents
=
0
#
# trigger generator
...
...
@@ -260,26 +315,15 @@ xmldoc.childNodes[-1].appendChild(sngl_burst_table)
head
=
triggergen
=
pipeparts
.
mkgeneric
(
pipeline
,
head
,
"
lal_string_triggergen
"
,
threshold
=
options
.
threshold
,
cluster
=
options
.
cluster_events
,
bank_filename
=
options
.
template_bank
,
autocorrelation_matrix
=
numpy
.
zeros
((
len
(
template_bank_table
),
403
),
dtype
=
numpy
.
float64
))
mainloop
=
GObject
.
MainLoop
()
handler
=
PipelineHandler
(
mainloop
,
pipeline
,
template_bank_table
,
firbank
)
#
# appsync
#
def
appsink_new_buffer
(
elem
):
buf
=
elem
.
emit
(
"
pull-sample
"
).
get_buffer
()
events
=
[]
for
i
in
range
(
buf
.
n_memory
()):
memory
=
buf
.
peek_memory
(
i
)
result
,
mapinfo
=
memory
.
map
(
Gst
.
MapFlags
.
READ
)
assert
result
if
mapinfo
.
data
:
events
.
extend
(
snglbursttable
.
GSTLALSnglBurst
.
from_buffer
(
mapinfo
.
data
))
memory
.
unmap
(
mapinfo
)
for
event
in
events
:
event
.
process_id
=
process
.
process_id
event
.
event_id
=
sngl_burst_table
.
get_next_id
()
sngl_burst_table
.
append
(
event
)
appsync
=
pipeparts
.
AppSync
(
appsink_new_buffer
=
appsink_new_buffer
)
appsync
=
pipeparts
.
AppSync
(
appsink_new_buffer
=
handler
.
appsink_new_buffer
)
appsync
.
add_sink
(
pipeline
,
head
,
caps
=
Gst
.
Caps
.
from_string
(
"
application/x-lal-snglburst
"
))
...
...
@@ -295,18 +339,15 @@ options.gps_start_time = LIGOTimeGPS(options.gps_start_time)
options
.
gps_end_time
=
LIGOTimeGPS
(
options
.
gps_end_time
)
datasource
.
pipeline_seek_for_gps
(
pipeline
,
options
.
gps_start_time
,
options
.
gps_end_time
);
if
pipeline
.
set_state
(
Gst
.
State
.
PLAYING
)
!=
Gst
.
StateChangeReturn
.
SUCCESS
:
raise
RuntimeError
(
"
pipeline did not enter playing state
"
)
mainloop
=
GObject
.
MainLoop
()
handler
=
PSDHandler
(
mainloop
,
pipeline
,
firbank
)
mainloop
.
run
()
#
# write output to disk
#
search_summary_table
.
append
(
search_summary
)
ligolw_utils
.
write_filename
(
xmldoc
,
options
.
output
,
gz
=
(
options
.
output
or
"
stdout
"
).
endswith
(
"
.gz
"
),
verbose
=
options
.
verbose
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment