Skip to content
Snippets Groups Projects
Commit a7599a43 authored by Christopher Wipf's avatar Christopher Wipf Committed by Jameson Graef Rollins
Browse files

Voyager parameter update

parent a5f2d45e
No related branches found
No related tags found
1 merge request!79Voyager parameter update
Pipeline #121920 passed
......@@ -76,72 +76,103 @@ Seismic:
Omicron: 10 # Feedforward cancellation factor
TestMassHeight: 1.5 # m
RayleighWaveSpeed: 250 # m/s
PlatformMotion: '6D'
#darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
Suspension:
Type: 'BQuad'
Type: 'Quad'
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
theta: 1e-3 # vertical-horizontal x-coupling
FiberType: 'Ribbon'
# For Ribbon suspension
# 1:10 aspect ratio & stress limited to 1GPa
# -- Feb 25, 2018 (KA)
Ribbon:
Thickness: 220e-6 # m
Width: 2200e-6 # m
Fiber:
Radius: 205e-6 # m
BreakStress: 750e6 # Pa; ref. K. Strain
Thickness: 500e-6 # m
Width: 10000e-6 # m
# Note stage numbering: mirror is at beginning of stack, not end
# these mass numbers are from v8 of the Voyager design doc
#
# mass/length from Koji's seis&sus_thermal optimization
# load('Suspension_subcodes/sus_param.mat')
#
# Vert spring constants scaled from the aLIGO values
# according to the suspended mass by each stage
# The spring constant of the final stage
# Silicon Blade for max 1GPa stress has 43mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade for max 300MPa stress has 9.6mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade (40cmx8cm) for max 100MPa stress has 7.5mm sag under 50kg load.
# This corresponds to 6.5e4 N/m. There are 4 blades.
#
# Wire radii scaled from the aLIGO values
# according to the suspended mass by each stage
# For steel stages, we limit the stress up to 700MPa which was the number
# from the aLIGO case.
#
# Blade thicknesses scaled from the aLIGO values
# Used only for TE calculation
# Not reflected to the vertical spring constants
# Need to be recalculated -- Feb 25, 2018 (KA)
# Spring constant is proportional to (the blade thickness)^3.
Stage:
# Load saved file with optimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
- Mass: 200.0 # kg; susmat['testmass_mass'][0,0]
Length: 0.4105 # m
- Mass: 200.0 # kg; sus_param(5)
Length: 0.7824 # m; sus_param(1)
Temp: 123.0
Dilution: .nan
K: .nan
K: 2.6e5 # N/m; 6.5e4*4
WireRadius: .nan
Blade: .nan # blade thickness
Blade: 12e-3 # blade thickness
NWires: 4
- Mass: 65.9 # kg; susmat['PUMmass'][0,0]
Length: 0.4105 # m
WireMaterial: 'Silicon_123K'
BladeMaterial: 'Silicon_123K'
- Mass: 200.0 # kg; sus_param(6)
Length: 0.5592 # m; sus_param(2)
Temp: 123.0
Dilution: 106.0
K: 17300.0 # N/m; vertical spring constant
WireRadius: 565e-6
Blade: 4200e-6
Dilution: .nan
K: 2.63e4 # N/m; vertical spring constant
WireRadius: 0.668e-3
Blade: 7.21e-3
NWires: 4
- Mass: 87.6 # kg; susmat['UIMmass'][0,0]
Length: 0.4105 # m
Temp: 300.0
Dilution: 80.0
K: 13500.0 # N/m; vertical spring constant
WireRadius: 652e-6
Blade: 4600e-6
WireMaterialUpper: 'C70Steel'
WireMaterialLower: 'C70Steel_123K'
BladeMaterial: 'MaragingSteel'
- Mass: 70.0 # kg; sus_param(7)
Length: 0.1500 # m; sus_param(3)
Temp: 295.0
Dilution: .nan
K: 1.82e4 # N/m; vertical spring constant
WireRadius: 0.724e-3
Blade: 7.7e-3
NWires: 4
- Mass: 116.5 # kg; susmat['topmass_mass'][0,0]
Length: 0.4105 # m
Temp: 300.0
Dilution: 87.0
K: 12900.0 # N/m; vertical spring constant
WireRadius: 1012e-6
Blade: 4300e-6
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
- Mass: 50.0 # kg; sus_param(8)
Length: 0.1500 # m; sus_param(4)
Temp: 295.0
Dilution: .nan
K: 1.14e5 # N/m; vertical spring constant
WireRadius: 1.08e-3
Blade: 13.9e-3
NWires: 2
Silicon:
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
Silicon_123K:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
# Investigation of mechanical losses of thin silicon flexures at low temperatures
# R Nawrodt et al 2013 Class. Quantum Grav. 30 115008
# ds*phi = 0.5e-12 -> ds=0.5e-12/2e-9
Dissdepth: 2.5e-4
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
......@@ -158,7 +189,15 @@ Suspension:
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
Y: 212e9 # measured by MB for one set of wires
C70Steel_123K:
Rho: 7800.0 # same as at 300K
C: 250.0 # guess
K: 15.0 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
Alpha: 8e-6 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9
MaragingSteel:
Rho: 7800.0
C: 460.0
......@@ -174,13 +213,13 @@ Materials:
Coating:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn: 80e9
Yhighn: 60e9 # http://dx.doi.org/10.1063/1.344462
Sigmahighn: 0.22
CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
CVhighn: 1.05e6 # volume-specific heat capacity (J/K/m^3); 465*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 1e-9 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn: 3e-5 # just a guess (depends on prep)
ThermalDiffusivityhighn: 1.03 # thermal conductivity W/m/K; http://dx.doi.org/10.1103/PhysRevLett.96.055902
Phihighn: 1e-5 # just a guess (depends on prep)
Indexhighn: 3.5
# low index material: silica
......@@ -190,7 +229,7 @@ Materials:
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
ThermalDiffusivitylown: 1.05 # thermal conductivity W/m/K; http://dx.doi.org/10.1109/ITHERM.2002.1012450
Philown: 1e-4 # ?
# calculated for 123 K and 2000 nm following
......@@ -228,7 +267,7 @@ Materials:
Laser:
Wavelength: 2000e-9 # m
Power: 144.6848 # W zz['x'][0][0]
Power: 151.5919 # W zz['x'][0][0]
Optics:
Type: 'SignalRecycled'
......@@ -245,24 +284,24 @@ Optics:
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
BeamRadius: 0.0585 # m; 1/e^2 power radius w1
CoatingAbsorption: 1e-6 # absorption of ITM
Transmittance: 1.2436875e-3 # zz['x'][0][3]
Transmittance: 2e-3 # zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
- 0.01054715
- 0.28787195
- 0.10285996
- 0.40016914
- 0.09876197
- 0.39463506
- 0.1054613
- 0.37612136
- 0.12181482
- 0.35883931
- 0.13570767
- 0.3867382
- 0.08814237
- 0.010547147008907
- 0.287871950886634
- 0.102859957426864
- 0.400169140711108
- 0.098761965585538
- 0.394635060435437
- 0.105461298430110
- 0.376121362983190
- 0.121814822178758
- 0.358839306265721
- 0.135707673300901
- 0.386738199718736
- 0.088142365969070
ETM:
BeamRadius: 0.0835 # m; 1/e^2 power radius w2
Transmittance: 5e-6 # Transmittance of ETM
......@@ -270,28 +309,28 @@ Optics:
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
- 0.01000241
- 0.27121433
- 0.16417485
- 0.33598991
- 0.16123195
- 0.33587683
- 0.16150012
- 0.33620725
- 0.16381275
- 0.33382231
- 0.16041712
- 0.33544017
- 0.1664314
- 0.33324722
- 0.16319734
- 0.33497111
- 0.15838689
- 0.010002413172599
- 0.271214331066003
- 0.164174846618198
- 0.335989914883352
- 0.161231951101195
- 0.335876828755542
- 0.161500120481736
- 0.336207246174627
- 0.163812752345812
- 0.333822310779772
- 0.160417119090227
- 0.335440166104688
- 0.166431402148518
- 0.333247215316394
- 0.163197340499259
- 0.334971108967147
- 0.158386886176904
PRM:
Transmittance: 0.03
Transmittance: 0.049
SRM:
CavityLength: 55 # m; ITM to SRM distance
Transmittance: 55.6235e-3 # zz['x'][0][4]
Transmittance: 45.8e-3 # zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
......@@ -305,7 +344,7 @@ Optics:
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.556827 # homoDyne phase [radians] zz['x'][0][5]
dc: 1.5832 # homoDyne phase [radians] zz['x'][0][5]
Squeezer:
# Define the squeezing you want:
......@@ -321,9 +360,9 @@ Squeezer:
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -36.44897 # detuning [Hz] zz['x'][0][1]
fdetune: -25 # detuning [Hz] zz['x'][0][1]
L: 300 # cavity length [m]
Ti: 0.00090274 # input mirror transmission [Power] zz['x'][0][2]
Ti: 6.15e-4 # input mirror transmission [Power] zz['x'][0][2]
Te: 0e-6 # end mirror transmission
Lrt: 10e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
......@@ -342,3 +381,4 @@ Squeezer:
Te: 0 # end mirror transmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment