Skip to content
Snippets Groups Projects
Commit eac1f088 authored by Jameson Rollins's avatar Jameson Rollins
Browse files

Merge branch 'ce-update' into 'master'

Update Cosmic Explorer interferometers

See merge request !116
parents c1d60e95 a6c3c1c8
No related branches found
No related tags found
1 merge request!116Update Cosmic Explorer interferometers
Pipeline #176817 passed
......@@ -40,9 +40,17 @@ Ranges in "Mpc" are for binary neutron stars (BNS) using the
![CE1](https://gwinc.docs.ligo.org/pygwinc/ifo/CE1.png)
## Cosmic Explorer 2
## Cosmic Explorer 2 (Silica)
* [ifo.yaml](gwinc/ifo/CE2/ifo.yaml)
* [CE2.h5](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2.h5)
* [ifo.yaml](gwinc/ifo/CE2silica/ifo.yaml)
* [CE2silica.h5](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silica.h5)
![CE2](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2.png)
![CE2 (Silica)](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silica.png)
## Cosmic Explorer 2 (Silicon)
* [ifo.yaml](gwinc/ifo/CE2silicon/ifo.yaml)
* [CE2silicon.h5](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silicon.h5)
![CE2 (Silicon)](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silicon.png)
......@@ -32,7 +32,8 @@ and future GW detectors (`gwinc.ifo`):
* [A+](https://gwinc.docs.ligo.org/pygwinc/ifo/Aplus.png)
* [Voyager](https://gwinc.docs.ligo.org/pygwinc/ifo/Voyager.png)
* [Cosmic Explorer 1](https://gwinc.docs.ligo.org/pygwinc/ifo/CE1.png)
* [Cosmic Explorer 2](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2.png)
* [Cosmic Explorer 2 (Silica)](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silica.png)
* [Cosmic Explorer 2 (Silicon)](https://gwinc.docs.ligo.org/pygwinc/ifo/CE2silicon.png)
See [IFO.md](IFO.md) for the latest CI-generated plots and hdf5 cached
data.
......
......@@ -69,7 +69,6 @@ class Substrate(nb.Budget):
style = dict(
label='Substrate Thermal',
color='#fb7d07',
linestyle='--',
)
noises = [
......@@ -78,6 +77,9 @@ class Substrate(nb.Budget):
]
ExcessGas.style['linestyle'] = '-'
class CE1(nb.Budget):
name = 'Cosmic Explorer 1'
......
# GWINC CE1 interferometer parameters
#
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
......@@ -26,8 +20,7 @@
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
#
# Updated numbers March 2018: LIGO-T1800044
Infrastructure:
Length: 40000 # m; whoa
......@@ -35,9 +28,12 @@ Infrastructure:
ResidualGas:
pressure: 4.0e-7 # Pa
mass: 3.35e-27 # kg; Mass of H_2 (ref. 10)
polarizability: 7.8e-31 # m^3
polarizability: 0.81e-30 # m^3 (H_2, DOI: 10.1116/1.1479360)
BuildingRadius: 10 # m
TCS:
## Parameter describing thermal lensing
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# The increase is estimated by calculating the round-trip loss S in the SRC as
......@@ -66,6 +62,7 @@ TCS:
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 5 # Hz; freq where 'flat' noise rolls off
......@@ -76,134 +73,129 @@ Seismic:
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 0.8 # quiet times beta: 0.35-0.60
# noisy times beta: 0.15-1.4
Omicron: 1 # Feedforward cancellation factor
Omicron: 2 # Feedforward cancellation factor
TestMassHeight: 1.5 # m
pWaveSpeed: 600 # m/s
sWaveSpeed: 300 # m/s
RayleighWaveSpeed: 250 # m/s
pWaveLevel: 50 # Multiple of the Peterson NLNM amplitude
sWaveLevel: 40 # Multiple of the Peterson NLNM amplitude
PlatformMotion: 'BSC'
PlatformMotion: 'intermediate'
Atmospheric:
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AdiabaticIndex: 1.4
SoundSpeed: 344 # m/s
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AirKinematicViscosity: 1.8e-5 # m**2/s
AdiabaticIndex: 1.4 #
SoundSpeed: 344 # m/s
WindSpeed: 10 # m/s; typical value
Temperature: 300 # K
TempStructConst: 0.2 # K**2/m**(2/3);
TempStructExp: 0.667 #
TurbOuterScale: 100 # m
# TurbEnergyDissRate: 0.01 # m**2/s**3
KolmEnergy1m: 1 # Kolmogorov energy spectrum at 1/m [m**2/s**2]
Suspension:
Type: 'Quad'
FiberType: 'Tapered'
BreakStress: 750e6 # Pa; ref. K. Strain
Temp: 290
# VHCoupling:
# theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO)
VHCoupling:
theta: 3.1e-3 # vertical-horizontal x-coupling
Silica:
Rho : 2.2e3 # Kg/m^3;
C : 772 # J/Kg/K;
K : 1.38 # W/m/kg;
Alpha : 3.9e-7 # 1/K;
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units
Y : 7.2e10 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800
C: 486
K: 49
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
MaragingSteel:
Rho: 7800
C: 460
K: 20
Alpha: 11e-6
dlnEdT: 0
Phi: 1e-4
Y: 187e9
# ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Silicon:
Rho: 2329 # Kg/m^3; density
C: 300 # J/kg/K heat capacity
K: 700 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T=120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
Fiber:
Radius: 456e-6 # m
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius: 1.163e-3 # m
EndLength: 45e-3 # m
# Note stage numbering: mirror is at beginning of stack, not end
#
# last stage length adjusted for d: 10mm and and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Stage:
# Stage1
- Mass: 316.8 # kg; current numbers May 2006 NAR
# length adjusted for d = 10mm and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Length: 1.18 # m
- Mass: 320 # kg
Length: 2 # m
Dilution: .nan #
K: .nan # N/m; vertical spring constant
K: 1.57e4 # N/m; vertical spring constant
WireRadius: .nan # m
Blade: .nan # blade thickness
Blade: 0.0045 # blade thickness
WireMaterial: 'Silica'
BladeMaterial: 'Silica'
NWires: 4
# Stage2
- Mass: 316.8
Length: 0.682
Dilution: 106
K: 41600
WireRadius: 877e-6
Blade: 0.011879
- Mass: 320
Length: 1.554
Dilution: .nan
K: 2.14e4
WireRadius: 845e-6
Blade: 13.3e-3
NWires: 4
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Stage3
- Mass: 174.4
Length: 0.554
Dilution: 80
K: 31200
WireRadius: 990e-6
Blade: 0.013011
- Mass: 299.2
Length: 0.238
Dilution: .nan
K: 1.98e4
WireRadius: 1.02e-3
Blade: 15.7e-3
NWires: 4
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Stage4
- Mass: 176.8
Length: 0.832
Dilution: 87
K: 27200
WireRadius: 1471e-6
Blade: 0.012162
- Mass: 560.8
Length: 0.208
Dilution: .nan # 87
K: 2.59e4
WireRadius: 1.83e-3
Blade: 16.8e-3
NWires: 2
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
# Suspension material properties
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
Fiber:
Radius: 424e-6 # m
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius: 1131e-6 # m; nominal 400um
EndLength: 45e-3 # m; nominal 20mm
C70Steel:
Rho: 7800.0
C: 486.0
K: 49.0
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
## Optic Material -------------------------------------------------------
MaragingSteel:
Rho: 7800.0
C: 460.0
K: 20.0
Alpha: 11e-6
dlnEdT: 0.0
Phi: 1.0e-4
Y: 187e9
# consistent with measured blade spring constants NAR
## Optic Material
Materials:
MassRadius: 0.4 # m
MassThickness: 0.286 # m
MassRadius: 0.35 # m
MassThickness: 0.378 # m
## Dielectric coating material parameters----------------------------------
## Dielectric coating material parameters
Coating:
## high index material: tantala
Yhighn: 124e9 # LMA (Granata at LVC) 2017 (was 140)
......@@ -213,7 +205,7 @@ Materials:
Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn: 33 # Fejer et al
Indexhighn: 2.06539
Phihighn: 9.0e-5 # tantala mechanical loss
Phihighn: 7.0e-5 # tantala mechanical loss
Phihighn_slope: 0.1
## low index material: silica
......@@ -224,14 +216,14 @@ Materials:
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al
Indexlown: 1.45
Philown: 1.25e-5 # silica mechanical loss
Philown: 2.3e-5 # silica mechanical loss
Philown_slope: 0 # G1600641 and arXiv:1712.05701 suggest
# slopes between 0 and 0.3, depending on
# deposition method. Slawek's analysis in
# 10.1103/PhysRevD.98.122001 assumes zero slope.
## Substrate Material parameters--------------------------------------------
## Substrate Material parameters
Substrate:
Temp: 295
c2: 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
......@@ -244,53 +236,59 @@ Materials:
MassCM: 739 # J/Kg/K; specific heat (ref. 4)
MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4)
RefractiveIndex: 1.45 # mevans 25 Apr 2008
dndT: 9.6e-6 # 1/K; Heraeus Suprasil UVL
## Laser-------------------------------------------------------------------
Laser:
Wavelength: 1.064e-6 # m
Power: 150 # W
Power: 165 # W
## Optics------------------------------------------------------------------
Optics:
Type: 'SignalRecycled'
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
PhotoDetectorEfficiency: 0.96 # photo-detector quantum efficiency
Loss: 20e-6 # average per mirror power loss
BSLoss: 0.1e-3 # power loss near beamsplitter
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
# calculate an effective r_srm
SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
SubstrateAbsorption: 0.5e-4 # 1/m; 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
ITM:
Transmittance: 0.014
CoatingThicknessLown: 0.308
CoatingThicknessCap: 0.5
CoatingAbsorption: 0.5e-6
ETM:
Transmittance: 5e-6
CoatingThicknessLown: 0.27
CoatingThicknessCap: 0.5
PRM:
Transmittance: 0.03
SRM:
Transmittance: 0.02
CavityLength: 55 # m, ITM to SRM distance
Tunephase: 0.0 # SEC tuning
CavityLength: 20 # m, ITM to SRM distance
Curvature:
ITM: 30000 # ROC of ITM
ETM: 30000 # ROC of ETM
Curvature: # ROC
ITM: 34000
ETM: 36000
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer:
# Define the squeezing you want:
# None = ignore the squeezer settings
# Freq Independent = nothing special (no filter cavities)
# Freq Dependent = applies the specified filter cavities
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type: 'Freq Dependent'
AmplitudedB: 7 # SQZ amplitude [dB]
InjectionLoss: 0.02 # power loss to sqz
......@@ -299,9 +297,9 @@ Squeezer:
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -4.99 # detuning [Hz] zz['x'][0][1]
fdetune: -5.17 # detuning [Hz]
L: 4000 # cavity length [m]
Ti: 0.00167 # input mirror transmission [Power] zz['x'][0][2]
Ti: 1.74e-3 # input mirror transmission [Power]
Te: 5e-6 # end mirror transmission
Lrt: 150e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
from gwinc.ifo.noises import *
from gwinc.ifo import PLOT_STYLE
class QuantumVacuum(nb.Budget):
"""Quantum Vacuum
"""
style = dict(
label='Quantum Vacuum',
color='#ad03de',
)
noises = [
QuantumVacuumAS,
QuantumVacuumArm,
QuantumVacuumSEC,
QuantumVacuumFilterCavity,
QuantumVacuumInjection,
QuantumVacuumReadout,
QuantumVacuumQuadraturePhase,
]
class Newtonian(nb.Budget):
"""Newtonian Gravity
"""
name = 'Newtonian'
style = dict(
label='Newtonian',
color='#15b01a',
)
noises = [
NewtonianRayleigh,
NewtonianBody,
NewtonianInfrasound,
]
class Coating(nb.Budget):
"""Coating Thermal
"""
name = 'Coating'
style = dict(
label='Coating Thermal',
color='#fe0002',
)
noises = [
CoatingBrownian,
CoatingThermoOptic,
]
class Substrate(nb.Budget):
"""Substrate Thermal
"""
name = 'Substrate'
style = dict(
label='Substrate Thermal',
color='#fb7d07',
)
noises = [
SubstrateBrownian,
SubstrateThermoElastic,
]
ExcessGas.style['linestyle'] = '-'
class CE2silica(nb.Budget):
name = 'Cosmic Explorer 2 (Silica)'
noises = [
QuantumVacuum,
Seismic,
Newtonian,
SuspensionThermal,
Coating,
Substrate,
ExcessGas,
]
calibrations = [
Strain,
]
plot_style = PLOT_STYLE
# GWINC CE2 (Silica) interferometer parameters
#
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# 1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
Infrastructure:
Length: 40000 # m; whoa
Temp: 293 # K
ResidualGas:
pressure: 4.0e-7 # Pa
mass: 3.35e-27 # kg; Mass of H_2 (ref. 10)
polarizability: 0.81e-30 # m^3 (H_2, DOI: 10.1116/1.1479360)
BuildingRadius: 10 # m
TCS:
## Parameter describing thermal lensing
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# The increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi_subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007)
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 5 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
KneeFrequencyHorizontal: 4 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevelHorizontal: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: 0.8 # abruptness of change at f_knee
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 0.8 # quiet times beta: 0.35-0.60
# noisy times beta: 0.15-1.4
Omicron: 10 # Feedforward cancellation factor
TestMassHeight: 1.5 # m
pWaveSpeed: 600 # m/s
sWaveSpeed: 300 # m/s
RayleighWaveSpeed: 250 # m/s
pWaveLevel: 15 # Multiple of the Peterson NLNM amplitude
sWaveLevel: 15 # Multiple of the Peterson NLNM amplitude
PlatformMotion: '6D'
Atmospheric:
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AirKinematicViscosity: 1.8e-5 # m**2/s
AdiabaticIndex: 1.4 #
SoundSpeed: 344 # m/s
WindSpeed: 10 # m/s; typical value
Temperature: 300 # K
TempStructConst: 0.2 # K**2/m**(2/3);
TempStructExp: 0.667 #
TurbOuterScale: 100 # m
# TurbEnergyDissRate: 0.01 # m**2/s**3
KolmEnergy1m: 1 # Kolmogorov energy spectrum at 1/m [m**2/s**2]
Suspension:
FiberType: 'Tapered'
BreakStress: 750e6 # Pa; ref. K. Strain
Temp: 290
VHCoupling:
theta: 3.1e-3 # vertical-horizontal x-coupling
Fiber:
Radius: 456e-6 # m
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius: 1.163e-3 # m
EndLength: 45e-3 # m
# Note stage numbering: mirror is at beginning of stack, not end
Stage:
# Stage1
- Mass: 320 # kg
Length: 2 # m
Dilution: .nan #
K: 1.57e4 # N/m; vertical spring constant
WireRadius: .nan # m
Blade: 0.0045 # blade thickness
WireMaterial: 'Silica'
BladeMaterial: 'Silica'
NWires: 4
# Stage2
- Mass: 320
Length: 1.554
Dilution: .nan
K: 2.14e4
WireRadius: 845e-6
Blade: 13.3e-3
NWires: 4
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Stage3
- Mass: 299.2
Length: 0.238
Dilution: .nan
K: 1.98e4
WireRadius: 1.02e-3
Blade: 15.7e-3
NWires: 4
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Stage4
- Mass: 560.8
Length: 0.208
Dilution: .nan # 87
K: 2.59e4
WireRadius: 1.83e-3
Blade: 16.8e-3
NWires: 2
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Suspension material properties
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800.0
C: 486.0
K: 49.0
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
MaragingSteel:
Rho: 7800.0
C: 460.0
K: 20.0
Alpha: 11e-6
dlnEdT: 0.0
Phi: 1.0e-4
Y: 187e9
# consistent with measured blade spring constants NAR
## Optic Material
Materials:
MassRadius: 0.35 # m
MassThickness: 0.378 # m
## Dielectric coating material parameters
Coating:
## high index material: tantala
Yhighn: 124e9 # LMA (Granata at LVC) 2017 (was 140)
Sigmahighn: 0.28 # LMA (Granata at LVC) 2017 (was 0.23)
CVhighn: 2.1e6 # Crooks et al, Fejer et al
Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn: 33 # Fejer et al
Indexhighn: 2.06539
Phihighn: 7.0e-5 # tantala mechanical loss
Phihighn_slope: 0.1
## low index material: silica
Ylown: 72e9
Sigmalown: 0.17
CVlown: 1.6412e6 # Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al
Indexlown: 1.45
Philown: 2.3e-5 # silica mechanical loss
Philown_slope: 0 # G1600641 and arXiv:1712.05701 suggest
# slopes between 0 and 0.3, depending on
# deposition method. Slawek's analysis in
# 10.1103/PhysRevD.98.122001 assumes zero slope.
## Substrate Material parameters
Substrate:
Temp: 295
c2: 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas: 5.2e-12 # Surface loss limit (ref. 12)
MirrorY: 7.27e10 # N/m^2; Youngs modulus (ref. 4)
MirrorSigma: 0.167 # Kg/m^3; Poisson ratio (ref. 4)
MassDensity: 2.2e3 # Kg/m^3; (ref. 4)
MassAlpha: 3.9e-7 # 1/K; thermal expansion coeff. (ref. 4)
MassCM: 739 # J/Kg/K; specific heat (ref. 4)
MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4)
RefractiveIndex: 1.45 # mevans 25 Apr 2008
dndT: 9.6e-6 # 1/K; Heraeus Suprasil UVL
Laser:
Wavelength: 1.064e-6 # m
Power: 165 # W
Optics:
Type: 'SignalRecycled'
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
PhotoDetectorEfficiency: 0.96 # photo-detector quantum efficiency
Loss: 20e-6 # average per mirror power loss
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
# calculate an effective r_srm
SubstrateAbsorption: 0.5e-4 # 1/m; 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
ITM:
Transmittance: 0.014
CoatingThicknessLown: 0.308
CoatingThicknessCap: 0.5
CoatingAbsorption: 0.5e-6
ETM:
Transmittance: 5e-6
CoatingThicknessLown: 0.27
CoatingThicknessCap: 0.5
PRM:
Transmittance: 0.03
SRM:
Transmittance: 0.02
Tunephase: 0.0 # SEC tuning
CavityLength: 20 # m, ITM to SRM distance
Curvature:
ITM: 30000 # ROC of ITM
ETM: 30000 # ROC of ETM
Squeezer:
# Define the squeezing you want:
# None = ignore the squeezer settings
# Freq Independent = nothing special (no filter cavities)
# Freq Dependent = applies the specified filter cavities
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type: 'Freq Dependent'
AmplitudedB: 15 # SQZ amplitude [dB]
InjectionLoss: 0.02 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
LOAngleRMS: 10e-3 # quadrature noise [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -5.17 # detuning [Hz]
L: 4000 # cavity length [m]
Ti: 1.74e-3 # input mirror transmission [Power]
Te: 5e-6 # end mirror transmission
Lrt: 150e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
......@@ -69,7 +69,6 @@ class Substrate(nb.Budget):
style = dict(
label='Substrate Thermal',
color='#fb7d07',
linestyle='--',
)
noises = [
......@@ -79,9 +78,12 @@ class Substrate(nb.Budget):
]
class CE2(nb.Budget):
ExcessGas.style['linestyle'] = '-'
name = 'Cosmic Explorer 2'
class CE2silicon(nb.Budget):
name = 'Cosmic Explorer 2 (Silicon)'
noises = [
QuantumVacuum,
......
# GWINC CE2 interferometer parameters
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# GWINC CE2 (Silicon) interferometer parameters
#
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# * References:
# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# * 2. LIGO/GEO data/experience
# * 3. Suspension reference design, LIGO-T000012-00
# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# * numbers for suprasil
# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# * (IFI/Plenum,1970)
# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# * Vol 4, Pt 2
# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# * 1991
# * 9. Rai Weiss, electronic log from 5/10/2006
# * 10. Wikipedia online encyclopedia, 2006
# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# * dielectrics in a Vacuum, page 29
# * 12. Gretarsson & Harry, Gretarsson thesis
# * 13. Fejer
# * 14. Braginsky
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# 1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
Infrastructure:
Length: 40000 # m; whoa
......@@ -34,7 +29,8 @@ Infrastructure:
pressure: 4.0e-7 # Pa
mass: 3.35e-27 # kg, Mass of H_2 (ref. 10)
polarizability: 0.81e-30 # m^3 (H_2, DOI: 10.1116/1.1479360)
BuildingRadius: 10 # m
BuildingRadius: 5 # m
TCS:
## Parameter describing thermal lensing
......@@ -66,6 +62,7 @@ TCS:
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 5 # Hz; freq where 'flat' noise rolls off
......@@ -85,86 +82,111 @@ Seismic:
sWaveLevel: 15 # Multiple of the Peterson NLNM amplitude
PlatformMotion: '6D'
Atmospheric:
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AdiabaticIndex: 1.4
SoundSpeed: 344 # m/s
AirPressure: 101325 # Pa
AirDensity: 1.225 # kg/m**3
AirKinematicViscosity: 1.8e-5 # m**2/s
AdiabaticIndex: 1.4 #
SoundSpeed: 344 # m/s
WindSpeed: 5 # m/s; typical value
Temperature: 300 # K
TempStructConst: 0.2 # K**2/m**(2/3);
TempStructExp: 0.667 #
TurbOuterScale: 100 # m
# TurbEnergyDissRate: 0.01 # m**2/s**3
KolmEnergy1m: 1 # Kolmogorov energy spectrum at 1/m [m**2/s**2]
Suspension:
Type: 'BQuad'
VHCoupling:
theta: 6.2e-3 # vertical-horizontal x-coupling
FiberType: 'Ribbon'
# For Ribbon suspension
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
Fiber:
Radius: 205e-6 # m
BreakStress: 750e6 # Pa; ref. K. Strain
VHCoupling:
theta: 3.1e-3 # vertical-horizontal x-coupling
Ribbon:
Thickness: 443e-6 # m
Width: 4430e-6 # m
# Note stage numbering: mirror is at beginning of stack, not end
# these mass numbers are from v8 of the Voyager design doc
Stage:
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
# Load saved file with optimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
- Mass: 316.8 # kg; susmat['testmass_mass'][0,0]
Length: 1.18 # m
# Stage 1
- Mass: 320 # kg
Length: 2 # m
Temp: 123.0
Dilution: .nan
K: 8000
K: 3.63e4
WireRadius: .nan
Blade: 0.0042 # blade thickness
BladeMaterial: 'Silicon'
Blade: 0.007 # blade thickness
WireMaterial: 'Silicon_123K'
BladeMaterial: 'Silicon_123K'
NWires: 4
- Mass: 316.8 # kg; susmat['PUMmass'][0,0]
Length: 0.682 # m
# Stage 2
- Mass: 320.2 # kg
Length: 1.601 # m
Temp: 123.0
Dilution: 106.0
K: 41600 # N/m; vertical spring constant
WireRadius: 877e-6
Blade: 0.0119
Dilution: .nan
K: 2.14e4 # N/m; vertical spring constant
WireRadius: 845e-6
Blade: 13.4e-3
NWires: 4
- Mass: 174.4 # kg; susmat['UIMmass'][0,0]
Length: 0.554 # m
WireMaterialUpper: 'C70Steel'
WireMaterialLower: 'C70Steel_123K'
BladeMaterial: 'MaragingSteel'
# Stage 3
- Mass: 299.1 # kg
Length: 0.222 # m
Temp: 300.0
Dilution: 80.0
K: 31200 # N/m; vertical spring constant
WireRadius: 990e-6
Blade: 0.0130
Dilution: .nan
K: 1.98e4 # N/m; vertical spring constant
WireRadius: 1.02e-3
Blade: 15.7e-3
NWires: 4
- Mass: 176.8 # kg; susmat['topmass_mass'][0,0]
Length: 0.832 # m
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Stage 4
- Mass: 560.7 # kg
Length: 0.177 # m
Temp: 300.0
Dilution: 87.0
K: 27200.0 # N/m; vertical spring constant
WireRadius: 1471e-6
Blade: 0.0121
Dilution: .nan
K: 2.59e4 # N/m; vertical spring constant
WireRadius: 1.83e-3
Blade: 16.8e-3
NWires: 2
Silicon:
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
# Suspension material properties
Silicon_123K:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 4e-8 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
# Investigation of mechanical losses of thin silicon flexures at low temperatures
# R Nawrodt et al 2013 Class. Quantum Grav. 30 115008
# ds*phi = 0.5e-12 -> ds=0.5e-12/2e-9
Dissdepth: 2.5e-4
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
K: 1.38 # W/m/kg
Alpha: 3.9e-7 # 1/K
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06
Y: 72e9 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800.0
C: 486.0
......@@ -172,7 +194,17 @@ Suspension:
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
Y: 212e9 # measured by MB for one set of wires
C70Steel_123K:
Rho: 7800.0 # same as at 300K
C: 250.0 # guess
K: 15.0 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
Alpha: 8e-6 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9
MaragingSteel:
Rho: 7800.0
C: 460.0
......@@ -183,31 +215,37 @@ Suspension:
Y: 187e9
# consistent with measured blade spring constants NAR
## Optic Material
Materials:
MassRadius: 0.4 # m
MassThickness: 0.273 # m
## Dielectric coating material parameters
## Amorphous Silicon / Silica coating
Coating:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn: 80e9
Sigmahighn: 0.22
CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 1e-9 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn: 3e-5 # just a guess (depends on prep)
CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 4e-8 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn: 3e-5 # just a guess (depends on prep)
Indexhighn: 3.5
# low index material: silica
# https://wiki.ligo.org/OPT/SilicaCoatingProp
Ylown: 72e9 # Young's modulus (Pa)
Sigmalown: 0.17 # Poisson's ratio
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
Ylown: 72e9 # Young's modulus (Pa)
Sigmalown: 0.17 # Poisson's ratio
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
Philown: 1e-4 # ?
# calculated for 123 K and 2000 nm following
# calculated for 123 K and 2000 nm following
# Ghosh, et al (1994): http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
Indexlown: 1.436 # calculated (RXA)
......@@ -215,100 +253,101 @@ Materials:
# Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
Substrate:
# phi_sub = c2 * f^(MechLossExp)
c2: 3e-13 # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
Alphas: 5.2e-12 # Surface loss limit ???
MirrorY: 155.8e9 # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
MirrorSigma: 0.27 # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
MassDensity: 2329 # kg/m^3; (ioffe)
MassAlpha: 1e-9 # 1/K; CTE = 0 @ 120 K
MassCM: 300 # J/kg/K; specific heat (ioffe @ 120K)
MassKappa: 700 # W/(m*K); thermal conductivity (ioffe @ 120)
RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T) (ioffe)
dndT: 1e-4 # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
Temp: 123 # mirror temperature [K]
MassRadius: 0.4 # m; 80 cm mCZ silicon
MassThickness: 0.286
c2: 3e-13 # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
Alphas: 5.2e-12 # Surface loss limit ???
MirrorY: 155.8e9 # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
MirrorSigma: 0.27 # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
MassDensity: 2329 # kg/m^3; (ioffe)
MassAlpha: 4e-8 # 1/K; CTE = 0 @ 120 K
MassCM: 300 # J/kg/K; specific heat (ioffe @ 120K)
MassKappa: 700 # W/(m*K); thermal conductivity (ioffe @ 120)
RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T) (ioffe)
dndT: 1e-4 # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
Temp: 123 # mirror temperature [K]
## parameters for semiconductor optics
isSemiConductor: True # we are doing semiconductor optics
CarrierDensity: 1e19 # 1/m^3; carrier density for phosphorous-doped silicon
ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K
HoleDiffusion: 3.5e-3 # m^2/s; hole diffusion coefficient for silicon at 120 K
ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e
HoleEffMass: 8.016e-31 # kg; effective mass of each hole 0.88*m_e
ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
Laser:
Wavelength: 2000e-9 # m
Power: 250 # W zz['x'][0][0]
Wavelength: 2e-6 # m
Power: 332 # W
Optics:
Type: 'SignalRecycled'
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
PhotoDetectorEfficiency: 0.96 # photo-detector quantum efficiency
Loss: 20e-6 # average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
# calculate an effective r_srm
SubstrateAbsorption: 0.5e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
# calculate arm cavity spot sizes
# L = ifo.Infrastructure.Length
# w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
# 1 - L / ifo.Optics.Curvature.ETM,
# L, ifo.Laser.Wavelength)
# load quantum PSO
# qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
# zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
ITM:
Transmittance: 0.014
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
CoatingAbsorption: 0.5e-6 # absorption of ITM
Transmittance: 0.014 # zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
- 0.01054715
- 0.28787195
- 0.10285996
- 0.40016914
- 0.09876197
- 0.39463506
- 0.1054613
- 0.37612136
- 0.12181482
- 0.35883931
- 0.13570767
- 0.3867382
- 0.08814237
CoatLayerOpticalThickness:
- 0.01500
- 0.27228
- 0.08605
- 0.41605
- 0.07680
- 0.43423
- 0.07104
- 0.39883
- 0.09322
- 0.38697
- 0.08560
ETM:
Transmittance: 5e-6 # Transmittance of ETM
Transmittance: 5e-6
#CoatingThicknessLown: 0.27
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
- 0.01000241
- 0.27121433
- 0.16417485
- 0.33598991
- 0.16123195
- 0.33587683
- 0.16150012
- 0.33620725
- 0.16381275
- 0.33382231
- 0.16041712
- 0.33544017
- 0.1664314
- 0.33324722
- 0.16319734
- 0.33497111
- 0.15838689
CoatLayerOpticalThickness:
- 0.48859
- 0.28634
- 0.21111
- 0.28393
- 0.21117
- 0.28384
- 0.21127
- 0.28385
- 0.21112
- 0.28392
- 0.21088
- 0.28389
- 0.21130
- 0.28372
- 0.21103
PRM:
Transmittance: 0.03
SRM:
CavityLength: 55 # m; ITM to SRM distance
Transmittance: 0.02 # zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.96 # photo-detector quantum efficiency
Loss: 20e-6 # average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss: 0.1e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
Transmittance: 0.02
Tunephase: 0.0 # SEC tuning
CavityLength: 20 # m; ITM to SRM distance
Curvature:
ITM: 34000 # RoC of ITM
ETM: 36000 # RoC of ETM
SubstrateAbsorption: 0.5e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5708 # homoDyne phase [radians] zz['x'][0][5]
ITM: 30000 # ROC of ITM
ETM: 30000 # ROC of ETM
Squeezer:
# Define the squeezing you want:
......@@ -321,28 +360,13 @@ Squeezer:
AmplitudedB: 15 # SQZ amplitude [dB]
InjectionLoss: 0.02 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
LOAngleRMS: 10e-3 # quadrature noise [radians]
LOAngleRMS: 10e-3 # quadrature noise [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -4.9993 # detuning [Hz] zz['x'][0][1]
fdetune: -5.35 # detuning [Hz]
L: 4000 # cavity length [m]
Ti: 0.0016836 # input mirror transmission [Power] zz['x'][0][2]
Ti: 1.80e-3 # input mirror transmission [Power]
Te: 5e-6 # end mirror transmission
Lrt: 150e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter:
Type: 'None'
FilterCavity:
fdetune: -30 # detuning [Hz]
L: 4000 # cavity length
Ti: 10e-3 # input mirror transmission [Power]
Te: 0 # end mirror transmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
......@@ -6,7 +6,8 @@ IFOS = [
'Aplus',
'Voyager',
'CE1',
'CE2',
'CE2silica',
'CE2silicon',
]
......
......@@ -44,8 +44,14 @@ def platform_motion(f, ifo):
nt, nr = seismic_BSC_ISI(f)
elif ifo.Seismic.PlatformMotion == '6D':
nt, nr = seismic_BSC_ISI_6D(f)
elif ifo.Seismic.PlatformMotion == 'intermediate':
nt_isi, nr_isi = seismic_BSC_ISI(f)
nt_6d, nr_6d = seismic_BSC_ISI_6D(f)
nt = np.sqrt(nt_isi * nt_6d)
nr = np.sqrt(nr_isi * nr_6d)
else:
nt, nr = seismic_BSC_ISI(f)
raise ValueError(
'Unrecognized platform motion ' + ifo.Seismic.PlatformMotion)
else:
nt, nr = seismic_BSC_ISI(f)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment