Skip to content

Update quantum code from matgwinc, and vectorize

Christopher Wipf requested to merge fast-quantum-matmul into master

Before this change and !31 (merged):

%timeit gwinc.gwinc(freq, ifo)

519 ms ± 15.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

After both:

%timeit gwinc.gwinc(freq, ifo)

50.4 ms ± 1.97 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

%prun gwinc.gwinc(freq, ifo)

     5304 function calls (4870 primitive calls) in 0.102 seconds

Ordered by: internal time

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    74    0.033    0.000    0.034    0.000 coatingthermal.py:743(getCoatRefl)
     1    0.014    0.014    0.016    0.016 quantum.py:257(shotradSignalRecycled)
    10    0.008    0.001    0.008    0.001 suspension.py:30(tst_force_to_tst_displ)
     2    0.007    0.004    0.007    0.004 coatingthermal.py:446(getCoatTOPhase)
     1    0.006    0.006    0.016    0.016 suspension.py:51(suspQuad)
     7    0.006    0.001    0.006    0.001 {built-in method numpy.core.multiarray.matmul}

I think the biggest remaining chunk of run time goes to the coating design step in precompIFO (which can be skipped by setting CoatLayerOpticalThickness in the ifo struct).

Edited by Christopher Wipf

Merge request reports

Loading