Skip to content
Snippets Groups Projects

Voyager parameter update

Merged Christopher Wipf requested to merge voyager-params into master
1 unresolved thread
+ 121
81
@@ -76,72 +76,103 @@ Seismic:
Omicron: 10 # Feedforward cancellation factor
TestMassHeight: 1.5 # m
RayleighWaveSpeed: 250 # m/s
PlatformMotion: '6D'
#darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
Suspension:
Type: 'BQuad'
Type: 'Quad'
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
theta: 1e-3 # vertical-horizontal x-coupling
FiberType: 'Ribbon'
# For Ribbon suspension
# 1:10 aspect ratio & stress limited to 1GPa
# -- Feb 25, 2018 (KA)
Ribbon:
Thickness: 220e-6 # m
Width: 2200e-6 # m
Fiber:
Radius: 205e-6 # m
BreakStress: 750e6 # Pa; ref. K. Strain
Thickness: 500e-6 # m
Width: 10000e-6 # m
# Note stage numbering: mirror is at beginning of stack, not end
# these mass numbers are from v8 of the Voyager design doc
#
# mass/length from Koji's seis&sus_thermal optimization
# load('Suspension_subcodes/sus_param.mat')
#
# Vert spring constants scaled from the aLIGO values
# according to the suspended mass by each stage
# The spring constant of the final stage
# Silicon Blade for max 1GPa stress has 43mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade for max 300MPa stress has 9.6mm sag under 50kg load.
# This corresponds to 1.14e4 N/m. There are 4 blades.
# Silicon Blade (40cmx8cm) for max 100MPa stress has 7.5mm sag under 50kg load.
# This corresponds to 6.5e4 N/m. There are 4 blades.
#
# Wire radii scaled from the aLIGO values
# according to the suspended mass by each stage
# For steel stages, we limit the stress up to 700MPa which was the number
# from the aLIGO case.
#
# Blade thicknesses scaled from the aLIGO values
# Used only for TE calculation
# Not reflected to the vertical spring constants
# Need to be recalculated -- Feb 25, 2018 (KA)
# Spring constant is proportional to (the blade thickness)^3.
Stage:
# Load saved file with optimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
- Mass: 200.0 # kg; susmat['testmass_mass'][0,0]
Length: 0.4105 # m
- Mass: 200.0 # kg; sus_param(5)
Length: 0.7824 # m; sus_param(1)
Temp: 123.0
Dilution: .nan
K: .nan
K: 2.6e5 # N/m; 6.5e4*4
WireRadius: .nan
Blade: .nan # blade thickness
Blade: 12e-3 # blade thickness
NWires: 4
- Mass: 65.9 # kg; susmat['PUMmass'][0,0]
Length: 0.4105 # m
WireMaterial: 'Silicon_123K'
BladeMaterial: 'Silicon_123K'
- Mass: 200.0 # kg; sus_param(6)
Length: 0.5592 # m; sus_param(2)
Temp: 123.0
Dilution: 106.0
K: 17300.0 # N/m; vertical spring constant
WireRadius: 565e-6
Blade: 4200e-6
Dilution: .nan
K: 2.63e4 # N/m; vertical spring constant
WireRadius: 0.668e-3
Blade: 7.21e-3
NWires: 4
- Mass: 87.6 # kg; susmat['UIMmass'][0,0]
Length: 0.4105 # m
Temp: 300.0
Dilution: 80.0
K: 13500.0 # N/m; vertical spring constant
WireRadius: 652e-6
Blade: 4600e-6
WireMaterialUpper: 'C70Steel'
WireMaterialLower: 'C70Steel_123K'
BladeMaterial: 'MaragingSteel'
- Mass: 70.0 # kg; sus_param(7)
Length: 0.1500 # m; sus_param(3)
Temp: 295.0
Dilution: .nan
K: 1.82e4 # N/m; vertical spring constant
WireRadius: 0.724e-3
Blade: 7.7e-3
NWires: 4
- Mass: 116.5 # kg; susmat['topmass_mass'][0,0]
Length: 0.4105 # m
Temp: 300.0
Dilution: 87.0
K: 12900.0 # N/m; vertical spring constant
WireRadius: 1012e-6
Blade: 4300e-6
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
- Mass: 50.0 # kg; sus_param(8)
Length: 0.1500 # m; sus_param(4)
Temp: 295.0
Dilution: .nan
K: 1.14e5 # N/m; vertical spring constant
WireRadius: 1.08e-3
Blade: 13.9e-3
NWires: 2
Silicon:
WireMaterial: 'C70Steel'
BladeMaterial: 'MaragingSteel'
Silicon_123K:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Rho: 2329.0 # Kg/m^3 density
C: 300.0 # J/kg/K heat capacity
K: 700.0 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T)
# E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
# Investigation of mechanical losses of thin silicon flexures at low temperatures
# R Nawrodt et al 2013 Class. Quantum Grav. 30 115008
# ds*phi = 0.5e-12 -> ds=0.5e-12/2e-9
Dissdepth: 2.5e-4
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
@@ -158,7 +189,15 @@ Suspension:
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
Y: 212e9 # measured by MB for one set of wires
C70Steel_123K:
Rho: 7800.0 # same as at 300K
C: 250.0 # guess
K: 15.0 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
Alpha: 8e-6 # https://nptel.ac.in/courses/112101004/downloads/(6-3-2)%20NPTEL%20-%20Properties%20of%20Materials%20at%20Cryogenic%20Temperature.pdf
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9
MaragingSteel:
Rho: 7800.0
C: 460.0
@@ -174,13 +213,13 @@ Materials:
Coating:
# high index material: a-Si
# https://wiki.ligo.org/OPT/AmorphousSilicon
Yhighn: 80e9
Yhighn: 60e9 # http://dx.doi.org/10.1063/1.344462
Sigmahighn: 0.22
CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
CVhighn: 1.05e6 # volume-specific heat capacity (J/K/m^3); 465*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
Alphahighn: 1e-9 # zero crossing at 123 K
Betahighn: 1.4e-4 # dn/dT
ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
Phihighn: 3e-5 # just a guess (depends on prep)
ThermalDiffusivityhighn: 1.03 # thermal conductivity W/m/K; http://dx.doi.org/10.1103/PhysRevLett.96.055902
Phihighn: 1e-5 # just a guess (depends on prep)
Indexhighn: 3.5
# low index material: silica
@@ -190,7 +229,7 @@ Materials:
CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
ThermalDiffusivitylown: 1.05 # thermal conductivity W/m/K; http://dx.doi.org/10.1109/ITHERM.2002.1012450
Philown: 1e-4 # ?
# calculated for 123 K and 2000 nm following
@@ -228,7 +267,7 @@ Materials:
Laser:
Wavelength: 2000e-9 # m
Power: 144.6848 # W zz['x'][0][0]
Power: 151.5919 # W zz['x'][0][0]
Optics:
Type: 'SignalRecycled'
@@ -245,24 +284,24 @@ Optics:
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
BeamRadius: 0.0585 # m; 1/e^2 power radius w1
CoatingAbsorption: 1e-6 # absorption of ITM
Transmittance: 1.2436875e-3 # zz['x'][0][3]
Transmittance: 2e-3 # zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
- 0.01054715
- 0.28787195
- 0.10285996
- 0.40016914
- 0.09876197
- 0.39463506
- 0.1054613
- 0.37612136
- 0.12181482
- 0.35883931
- 0.13570767
- 0.3867382
- 0.08814237
- 0.010547147008907
- 0.287871950886634
- 0.102859957426864
- 0.400169140711108
- 0.098761965585538
- 0.394635060435437
- 0.105461298430110
- 0.376121362983190
- 0.121814822178758
- 0.358839306265721
- 0.135707673300901
- 0.386738199718736
- 0.088142365969070
ETM:
BeamRadius: 0.0835 # m; 1/e^2 power radius w2
Transmittance: 5e-6 # Transmittance of ETM
@@ -270,28 +309,28 @@ Optics:
#CoatingThicknessCap: 0.5
#etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
- 0.01000241
- 0.27121433
- 0.16417485
- 0.33598991
- 0.16123195
- 0.33587683
- 0.16150012
- 0.33620725
- 0.16381275
- 0.33382231
- 0.16041712
- 0.33544017
- 0.1664314
- 0.33324722
- 0.16319734
- 0.33497111
- 0.15838689
- 0.010002413172599
- 0.271214331066003
- 0.164174846618198
- 0.335989914883352
- 0.161231951101195
- 0.335876828755542
- 0.161500120481736
- 0.336207246174627
- 0.163812752345812
- 0.333822310779772
- 0.160417119090227
- 0.335440166104688
- 0.166431402148518
- 0.333247215316394
- 0.163197340499259
- 0.334971108967147
- 0.158386886176904
PRM:
Transmittance: 0.03
Transmittance: 0.049
SRM:
CavityLength: 55 # m; ITM to SRM distance
Transmittance: 55.6235e-3 # zz['x'][0][4]
Transmittance: 45.8e-3 # zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
@@ -305,7 +344,7 @@ Optics:
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.556827 # homoDyne phase [radians] zz['x'][0][5]
dc: 1.5832 # homoDyne phase [radians] zz['x'][0][5]
Squeezer:
# Define the squeezing you want:
@@ -321,9 +360,9 @@ Squeezer:
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -36.44897 # detuning [Hz] zz['x'][0][1]
fdetune: -25 # detuning [Hz] zz['x'][0][1]
L: 300 # cavity length [m]
Ti: 0.00090274 # input mirror transmission [Power] zz['x'][0][2]
Ti: 6.15e-4 # input mirror transmission [Power] zz['x'][0][2]
Te: 0e-6 # end mirror transmission
Lrt: 10e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
@@ -342,3 +381,4 @@ Squeezer:
Te: 0 # end mirror transmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
Loading