Skip to content
Snippets Groups Projects
Commit 6f45533a authored by Virginia d'Emilio's avatar Virginia d'Emilio
Browse files

pep8 fix multidim_gaussian.py

parent 93261489
No related branches found
No related tags found
No related merge requests found
......@@ -4,9 +4,6 @@ Testing the recovery of a multi-dimensional
Gaussian with zero mean and unit variance
"""
from __future__ import division
import matplotlib
matplotlib.use("PS")
import bilby
import numpy as np
......@@ -44,19 +41,21 @@ class MultidimGaussianLikelihood(bilby.Likelihood):
# self.parameters=dict(zip(self.keys, self.values))
def log_likelihood(self):
mu = np.array([self.parameters["mu_{0}".format(i)] for i in range(self.dim)])
mu = np.array(
[self.parameters["mu_{0}".format(i)] for i in range(self.dim)])
sigma = np.array(
[self.parameters["sigma_{0}".format(i)] for i in range(self.dim)]
)
# print('here' + str(self.data ))
[self.parameters["sigma_{0}".format(i)] for i in range(self.dim)])
p = np.array([(self.data[n, :] - mu) / sigma for n in range(self.N)])
return np.sum(-0.5 * (np.sum(p ** 2) + self.N * np.log(2 * np.pi * sigma ** 2)))
return np.sum(-0.5 * (np.sum(p ** 2) +
self.N * np.log(2 * np.pi * sigma ** 2)))
likelihood = MultidimGaussianLikelihood(data, dim)
priors = bilby.core.prior.PriorDict()
priors.update(
{"mu_{0}".format(i): bilby.core.prior.Uniform(-5, 5, "mu") for i in range(dim)}
{
"mu_{0}".format(i): bilby.core.prior.Uniform(-5, 5, "mu")
for i in range(dim)
}
)
priors.update(
{
......@@ -64,8 +63,6 @@ priors.update(
for i in range(dim)
}
)
# likelihood.parameters.update(priors.sample())
# likelihood.log_likelihood()
# And run sampler
result = bilby.run_sampler(
likelihood=likelihood,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment