Newer
Older
# GWINC aLIGO interferometer parameters
#
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# * Differentiate between silica and sapphire substrate absorption
# * Change ribbon suspension aspect ratio
# * Change pendulum frequency
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
# numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
# (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
# Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
# 1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
#
# Updated numbers March 2018: LIGO-T1800044
Infrastructure:
Length: 3995 # m
H2:
BeamtubePressure: 2.7e-7 # Pa
ChamberPressure: 2.7e-7 # Pa
mass: 3.35e-27 # kg; Mass of H_2 (ref. 10)
polarizability: 7.8e-31 # m^3
N2:
BeamtubePressure: 1.33e-8
ChamberPressure: 1.33e-8
mass: 4.65e-26
polarizability: 1.71e-30
H2O:
BeamtubePressure: 1.33e-8
ChamberPressure: 1.33e-8
mass: 2.99e-26
polarizability: 1.50e-30
O2:
BeamtubePressure: 1e-9
ChamberPressure: 1e-9
mass: 5.31e-26
polarizability: 1.56e-30
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# The increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi_subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007)
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
# The hardest part to model is how efficient the TCS system is in
# compensating this loss. Thus as a simple Ansatz we define the
# TCS efficiency TCSeff as the reduction in effective power that produces
# a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
# of 1 Watt absorbed is equivalent to the uncompensated distortion of 10mWatt.
# The above formula thus becomes:
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
#
# To avoid iterative calculation we define TCS.SCRloss = S as an input
# and calculate TCSeff as an output.
# TCS.SRCloss is incorporated as an additional loss in the SRC
SRCloss: 0.00
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: 0.8 # abruptness of change at f_knee
Beta: 0.8 # quiet times beta: 0.35-0.60
# noisy times beta: 0.15-1.4
TestMassHeight: 1.5 # m
RayleighWaveSpeed: 250 # m/s
Type: 'Quad'
FiberType: 'Tapered'
BreakStress: 750e6 # Pa; ref. K. Strain
Temp: 290
# VHCoupling:
# theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO)
Rho : 2.2e3 # Kg/m^3;
C : 772 # J/Kg/K;
K : 1.38 # W/m/kg;
Alpha : 3.9e-7 # 1/K;
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units
Y : 7.2e10 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
Rho: 7800
C: 486
K: 49
Alpha: 12e-6
dlnEdT: -2.5e-4
Phi: 2e-4
Y: 212e9 # measured by MB for one set of wires
MaragingSteel:
Rho: 7800
C: 460
K: 20
Alpha: 11e-6
dlnEdT: 0
Phi: 1e-4
Y: 187e9
# ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Silicon:
Rho: 2329 # Kg/m^3; density
C: 300 # J/kg/K heat capacity
K: 700 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT: -2e-5 # (1/K) dlnE/dT T=120K
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
# Note stage numbering: mirror is at beginning of stack, not end
#
# last stage length adjusted for d: 10mm and and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Stage:
# Stage1
- Mass: 39.6 # kg; current numbers May 2006 NAR
# length adjusted for d = 10mm and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
Length: 0.59 # m
Dilution: .nan #
K: .nan # N/m; vertical spring constant
WireRadius: .nan # m
Blade: .nan # blade thickness
NWires: 4
# Stage2
- Mass: 39.6
Length: 0.341
Dilution: 106
K: 5200
WireRadius: 310e-6
Blade: 4200e-6
NWires: 4
# Stage3
- Mass: 21.8
Length: 0.277
Dilution: 80
K: 3900
WireRadius: 350e-6
Blade: 4600e-6
NWires: 4
# Stage4
- Mass: 22.1
Length: 0.416
Dilution: 87
K: 3400
WireRadius: 520e-6
Blade: 4300e-6
NWires: 2
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
Fiber:
Radius: 205e-6 # m
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius: 400e-6 # m; nominal 400um
EndLength: 45e-3 # m; nominal 20mm
## Optic Material -------------------------------------------------------
Materials:
MassRadius: 0.17 # m;
MassThickness: 0.200 # m; Peter F 8/11/2005
## Dielectric coating material parameters----------------------------------
Coating:
## high index material: tantala
Yhighn: 120e9 # Ta2O5-TiO2 from 2020 LMA https://iopscience.iop.org/article/10.1088/1361-6382/ab77e9
Sigmahighn: 0.29 # 2020 LMA
CVhighn: 2.1e6 # Crooks et al, Fejer et al
Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn: 33 # Fejer et al
Phihighn: 9.0e-5 # tantala mechanical loss
Phihighn_slope: 0.1
Ylown: 70e9 # 2020 LMA
Sigmalown: 0.19 # 2020 LMA
CVlown: 1.6412e6 # Crooks et al, Fejer et al
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al
Indexlown: 1.45
Philown: 1.25e-5 # silica mechanical loss
Philown_slope: 0 # G1600641 and arXiv:1712.05701 suggest
# slopes between 0 and 0.3, depending on
# deposition method. Slawek's analysis in
# 10.1103/PhysRevD.98.122001 assumes zero slope.
## Substrate Material parameters--------------------------------------------
Substrate:
Temp: 295
c2: 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas: 5.2e-12 # Surface loss limit (ref. 12)
MirrorY: 7.27e10 # N/m^2; Youngs modulus (ref. 4)
MirrorSigma: 0.167 # Kg/m^3; Poisson ratio (ref. 4)
MassDensity: 2.2e3 # Kg/m^3; (ref. 4)
MassAlpha: 3.9e-7 # 1/K; thermal expansion coeff. (ref. 4)
MassCM: 739 # J/Kg/K; specific heat (ref. 4)
MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4)
RefractiveIndex: 1.45 # mevans 25 Apr 2008
## Laser-------------------------------------------------------------------
Laser:
Wavelength: 1.064e-6 # m
Power: 125 # W
## Optics------------------------------------------------------------------
Optics:
Type: 'SignalRecycled'
PhotoDetectorEfficiency: 0.9 # photo-detector quantum efficiency
Loss: 37.5e-6 # average per mirror power loss
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
# calculate an effective r_srm
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
ITM:
Transmittance: 0.014
CoatingThicknessLown: 0.308
CoatingThicknessCap: 0.5
CoatingAbsorption: 0.5e-6
ETM:
Transmittance: 5e-6
CoatingThicknessLown: 0.27
CoatingThicknessCap: 0.5
PRM:
Transmittance: 0.03
SRM:
Transmittance: 0.325
CavityLength: 55 # m, ITM to SRM distance
Tunephase: 0.0 # SEC tuning
Curvature: # ROC
ITM: 1970
ETM: 2192
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavities)
# Freq Dependent = applies the specified filter cavities
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer:
Type: 'Freq Dependent'
AmplitudedB: 12 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
LOAngleRMS: 30e-3 # quadrature noise [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
L: 300 # cavity length
Lrt: 60e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
fdetune: -45.78 # detuning [Hz]