Newer
Older
An example of how to use bilby to perform parameter estimation for
non-gravitational wave data. In this case, fitting the half-life and
initial radionuclide number for Polonium 214.
import matplotlib.pyplot as plt
from bilby.core.likelihood import PoissonLikelihood
from bilby.core.prior import LogUniform
# A few simple setup steps
label = "radioactive_decay"
outdir = "outdir"
bilby.utils.check_directory_exists_and_if_not_mkdir(outdir)
# generate a set of counts per minute for n_init atoms of
# Polonium 214 in atto-moles with a half-life of 20 minutes
n_avogadro = 6.02214078e23

Matthew David Pitkin
committed
atto = 1e-18
def decay_rate(delta_t, halflife, n_init):
"""
Get the decay rate of a radioactive substance in a range of time intervals
(in minutes). n_init is in moles.
Parameters
----------
delta_t: float, array-like
Time step in minutes
halflife: float
Halflife of atom in minutes
n_init: int, float
times = np.cumsum(delta_t)
times = np.insert(times, 0, 0.0)
counts = np.exp(-np.log(2) * times / halflife)

Matthew David Pitkin
committed
rates = (counts[:-1] - counts[1:]) * n_atoms / delta_t
# Now we define the injection parameters which we make simulated data with
injection_parameters = dict(halflife=halflife, n_init=n_init)
# These lines of code generate the fake data. Note the ** just unpacks the
# contents of the injection_parameters when calling the model function.
sampling_frequency = 1
time_duration = 300
time = np.arange(0, time_duration, 1 / sampling_frequency)
delta_t = np.diff(time)
rates = decay_rate(delta_t, **injection_parameters)
counts = np.random.poisson(rates)
theoretical = decay_rate(delta_t, **injection_parameters)
# We quickly plot the data to check it looks sensible
fig, ax = plt.subplots()
ax.semilogy(time[:-1], counts, "o", label="data")
ax.semilogy(time[:-1], theoretical, "--r", label="signal")
ax.set_xlabel("time")
ax.set_ylabel("counts")
ax.legend()
fig.savefig("{}/{}_data.png".format(outdir, label))
# Now lets instantiate a version of the Poisson Likelihood, giving it
# the time intervals, counts and rate model
likelihood = PoissonLikelihood(delta_t, counts, decay_rate)
priors["halflife"] = LogUniform(1e-5, 1e5, latex_label="$t_{1/2}$", unit="min")
priors["n_init"] = LogUniform(
1e-25 / atto, 1e-10 / atto, latex_label="$N_0$", unit="attomole"
)
# And run sampler
likelihood=likelihood,
priors=priors,
sampler="dynesty",
nlive=1000,
injection_parameters=injection_parameters,
outdir=outdir,
label=label,
)
result.plot_corner()