Skip to content
Snippets Groups Projects
radioactive_decay.py 2.78 KiB
Newer Older
#!/usr/bin/env python
An example of how to use bilby to perform parameter estimation for
non-gravitational wave data. In this case, fitting the half-life and
initial radionuclide number for Polonium 214.
import bilby
import matplotlib.pyplot as plt
import numpy as np
from bilby.core.likelihood import PoissonLikelihood
from bilby.core.prior import LogUniform
label = "radioactive_decay"
outdir = "outdir"
bilby.utils.check_directory_exists_and_if_not_mkdir(outdir)
# generate a set of counts per minute for n_init atoms of
# Polonium 214 in atto-moles with a half-life of 20 minutes
n_avogadro = 6.02214078e23
n_init = 1e-19 / atto

def decay_rate(delta_t, halflife, n_init):
    """
    Get the decay rate of a radioactive substance in a range of time intervals
    (in minutes). n_init is in moles.

    Parameters
    ----------
    delta_t: float, array-like
        Time step in minutes
    halflife: float
        Halflife of atom in minutes
    n_init: int, float
        Initial number of atoms
    times = np.cumsum(delta_t)
    times = np.insert(times, 0, 0.0)
    n_atoms = n_init * atto * n_avogadro
    counts = np.exp(-np.log(2) * times / halflife)
    rates = (counts[:-1] - counts[1:]) * n_atoms / delta_t
# Now we define the injection parameters which we make simulated data with
injection_parameters = dict(halflife=halflife, n_init=n_init)

# These lines of code generate the fake data. Note the ** just unpacks the
# contents of the injection_parameters when calling the model function.
sampling_frequency = 1
time_duration = 300
time = np.arange(0, time_duration, 1 / sampling_frequency)
delta_t = np.diff(time)
rates = decay_rate(delta_t, **injection_parameters)
# get radioactive counts
counts = np.random.poisson(rates)
theoretical = decay_rate(delta_t, **injection_parameters)

# We quickly plot the data to check it looks sensible
fig, ax = plt.subplots()
ax.semilogy(time[:-1], counts, "o", label="data")
ax.semilogy(time[:-1], theoretical, "--r", label="signal")
ax.set_xlabel("time")
ax.set_ylabel("counts")
fig.savefig("{}/{}_data.png".format(outdir, label))

# Now lets instantiate a version of the Poisson Likelihood, giving it
# the time intervals, counts and rate model
likelihood = PoissonLikelihood(delta_t, counts, decay_rate)
priors = dict()
priors["halflife"] = LogUniform(1e-5, 1e5, latex_label="$t_{1/2}$", unit="min")
priors["n_init"] = LogUniform(
    1e-25 / atto, 1e-10 / atto, latex_label="$N_0$", unit="attomole"
)
result = bilby.run_sampler(
    likelihood=likelihood,
    priors=priors,
    sampler="dynesty",
    sample="unif",
    nlive=1000,
    injection_parameters=injection_parameters,
    outdir=outdir,
    label=label,
)