Skip to content
Snippets Groups Projects
roq_example.py 4.82 KiB
Newer Older
#!/usr/bin/env python
"""
Example of how to use the Reduced Order Quadrature method (see Smith et al.,
(2016) Phys. Rev. D 94, 044031) for a Binary Black hole simulated signal in
Gaussian noise.

This requires files specifying the appropriate basis weights.
These aren't shipped with Bilby, but are available on LDG clusters and
from the public repository https://git.ligo.org/lscsoft/ROQ_data.
"""

import numpy as np

import bilby

outdir = 'outdir'
label = 'roq'

# The ROQ bases can be given an overall scaling.
# Note how this is applied to durations, frequencies and masses.
scale_factor = 1.6

# Load in the pieces for the linear part of the ROQ. Note you will need to
# adjust the filenames here to the correct paths on your machine
basis_matrix_linear = np.load("B_linear.npy").T
freq_nodes_linear = np.load("fnodes_linear.npy") * scale_factor

# Load in the pieces for the quadratic part of the ROQ
Colm Talbot's avatar
Colm Talbot committed
basis_matrix_quadratic = np.load("B_quadratic.npy").T
freq_nodes_quadratic = np.load("fnodes_quadratic.npy") * scale_factor

# Load the parameters describing the valid parameters for the basis.
params = np.genfromtxt("params.dat", names=True)

# Get scaled ROQ quantities
minimum_chirp_mass = params['chirpmassmin'] / scale_factor
maximum_chirp_mass = params['chirpmassmax'] / scale_factor
minimum_component_mass = params['compmin'] / scale_factor

np.random.seed(170808)

duration = 4 / scale_factor
sampling_frequency = 2048 * scale_factor

injection_parameters = dict(
Colm Talbot's avatar
Colm Talbot committed
    mass_1=36.0, mass_2=29.0, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0,
Colm Talbot's avatar
Colm Talbot committed
    phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=0.659,
    phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108)

waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
                          reference_frequency=20. * scale_factor)

waveform_generator = bilby.gw.WaveformGenerator(
    duration=duration, sampling_frequency=sampling_frequency,
    frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
    waveform_arguments=waveform_arguments,
    parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters)

ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1'])
ifos.set_strain_data_from_power_spectral_densities(
    sampling_frequency=sampling_frequency, duration=duration,
    start_time=injection_parameters['geocent_time'] - 3 / scale_factor)
ifos.inject_signal(waveform_generator=waveform_generator,
                   parameters=injection_parameters)
for ifo in ifos:
    ifo.minimum_frequency = 20 * scale_factor

# make ROQ waveform generator
search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator(
    duration=duration, sampling_frequency=sampling_frequency,
Colm Talbot's avatar
Colm Talbot committed
    frequency_domain_source_model=bilby.gw.source.binary_black_hole_roq,
    waveform_arguments=dict(
        frequency_nodes_linear=freq_nodes_linear,
        frequency_nodes_quadratic=freq_nodes_quadratic,
        reference_frequency=20. * scale_factor, waveform_approximant='IMRPhenomPv2'),
    parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters)

# Here we add constraints on chirp mass and mass ratio to the prior, these are
# determined by the domain of validity of the ROQ basis.
priors = bilby.gw.prior.BBHPriorDict()
Colm Talbot's avatar
Colm Talbot committed
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra',
            'dec', 'phi_12', 'phi_jl', 'luminosity_distance']:
    priors[key] = injection_parameters[key]
for key in ['mass_1', 'mass_2']:
    priors[key].minimum = max(priors[key].minimum, minimum_component_mass)
priors['chirp_mass'] = bilby.core.prior.Uniform(
    name='chirp_mass', minimum=float(minimum_chirp_mass),
    maximum=float(maximum_chirp_mass))
priors['mass_ratio'] = bilby.core.prior.Uniform(0.125, 1, name='mass_ratio')
priors['geocent_time'] = bilby.core.prior.Uniform(
    injection_parameters['geocent_time'] - 0.1,
    injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s')

likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient(
    interferometers=ifos, waveform_generator=search_waveform_generator,
Colm Talbot's avatar
Colm Talbot committed
    linear_matrix=basis_matrix_linear, quadratic_matrix=basis_matrix_quadratic,
    priors=priors, roq_params=params, roq_scale_factor=scale_factor)
Colm Talbot's avatar
Colm Talbot committed

# write the weights to file so they can be loaded multiple times
likelihood.save_weights('weights.npz')
Colm Talbot's avatar
Colm Talbot committed

# remove the basis matrices as these are big for longer bases
del basis_matrix_linear, basis_matrix_quadratic

# load the weights from the file
likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient(
    interferometers=ifos, waveform_generator=search_waveform_generator,
    weights='weights.npz', priors=priors)

result = bilby.run_sampler(
    likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500,
    injection_parameters=injection_parameters, outdir=outdir, label=label)

# Make a corner plot.
result.plot_corner()