-
Gregory Ashton authoredGregory Ashton authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
linear_regression.py 3.17 KiB
#!/bin/python
"""
An example of how to use tupak to perform paramater estimation for
non-gravitational wave data. In this case, fitting a linear function to
data with background Gaussian noise
"""
from __future__ import division
import tupak
import numpy as np
import matplotlib.pyplot as plt
import inspect
# A few simple setup steps
label = 'linear_regression'
outdir = 'outdir'
# First, we define our "signal model", in this case a simple linear function
def model(time, m, c):
return time * m + c
# New we define the injection parameters which we make simulated data with
injection_parameters = dict(m=0.5, c=0.2)
# For this example, we'll use standard Gaussian noise
sigma = 1
# These lines of code generate the fake data. Note the ** just unpacks the
# contents of the injection_paramsters when calling the model function.
sampling_frequency = 10
time_duration = 10
time = np.arange(0, time_duration, 1/sampling_frequency)
N = len(time)
data = model(time, **injection_parameters) + np.random.normal(0, sigma, N)
# We quickly plot the data to check it looks sensible
fig, ax = plt.subplots()
ax.plot(time, data, 'o', label='data')
ax.plot(time, model(time, **injection_parameters), '--r', label='signal')
ax.set_xlabel('time')
ax.set_ylabel('y')
ax.legend()
fig.savefig('{}/{}_data.png'.format(outdir, label))
# Parameter estimation: we now define a Gaussian Likelihood class relevant for
# our model.
class GaussianLikelihoodKnownNoise(tupak.Likelihood):
def __init__(self, x, y, sigma, function):
"""
A general Gaussian likelihood - the parameters are inferred from the
arguments of function
Parameters
----------
x, y: array_like
The data to analyse
sigma: float
The standard deviation of the noise
function:
The python function to fit to the data. Note, this must take the
dependent variable as its first argument. The other arguments are
will require a prior and will be sampled over (unless a fixed
value is given).
"""
self.x = x
self.y = y
self.sigma = sigma
self.N = len(x)
self.function = function
# These lines of code infer the parameters from the provided function
parameters = inspect.getargspec(function).args
parameters.pop(0)
self.parameters = dict.fromkeys(parameters)
def log_likelihood(self):
res = self.y - self.function(self.x, **self.parameters)
return -0.5 * (np.sum((res / self.sigma)**2)
+ self.N*np.log(2*np.pi*self.sigma**2))
# Now lets instantiate a version of our GaussianLikelihood, giving it
# the time, data and signal model
likelihood = GaussianLikelihoodKnownNoise(time, data, sigma, model)
# From hereon, the syntax is exactly equivalent to other tupak examples
# We make a prior
priors = {}
priors['m'] = tupak.core.prior.Uniform(0, 5, 'm')
priors['c'] = tupak.core.prior.Uniform(-2, 2, 'c')
# And run sampler
result = tupak.run_sampler(
likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500,
walks=10, injection_parameters=injection_parameters, outdir=outdir,
label=label)
result.plot_corner()