Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
grid_test.py 11.01 KiB
from __future__ import absolute_import, division

import unittest
import numpy as np
import shutil
import os
from scipy.stats import multivariate_normal

import bilby


# set 2D multivariate Gaussian likelihood
class MultiGaussian(bilby.Likelihood):
    def __init__(self, mean, cov):
        super(MultiGaussian, self).__init__(parameters=dict())
        self.cov = np.array(cov)
        self.mean = np.array(mean)
        self.sigma = np.sqrt(np.diag(self.cov))
        self.pdf = multivariate_normal(mean=self.mean, cov=self.cov)

    @property
    def dim(self):
        return len(self.cov[0])

    def log_likelihood(self):
        x = np.array([self.parameters["x{0}".format(i)] for i in range(self.dim)])
        return self.pdf.logpdf(x)


class TestGrid(unittest.TestCase):
    def setUp(self):
        np.random.seed(7)

        # set 2D multivariate Gaussian (zero mean, unit variance)
        self.mus = [0.0, 0.0]
        self.cov = [[1.0, 0.0], [0.0, 1.0]]
        dim = len(self.mus)
        self.likelihood = MultiGaussian(self.mus, self.cov)

        # set priors out to +/- 5 sigma
        self.priors = bilby.core.prior.PriorDict()
        self.priors.update(
            {
                "x{0}".format(i): bilby.core.prior.Uniform(-5, 5, "x{0}".format(i))
                for i in range(dim)
            }
        )

        # expected evidence integral should be (1/V) where V is the prior volume
        log_prior_vol = np.sum(
            np.log(
                [prior.maximum - prior.minimum for key, prior in self.priors.items()]
            )
        )
        self.expected_ln_evidence = -log_prior_vol

        self.grid_size = 100

        grid = bilby.core.grid.Grid(
            label="label",
            outdir="outdir",
            priors=self.priors,
            grid_size=self.grid_size,
            likelihood=self.likelihood,
            save=True,
        )

        self.grid = grid
        pass

    def tearDown(self):
        bilby.utils.command_line_args.bilby_test_mode = True
        try:
            shutil.rmtree(self.grid.outdir)
        except OSError:
            pass
        del self.grid
        pass

    def test_grid_file_name_default(self):
        outdir = "outdir"
        label = "label"
        self.assertEqual(
            bilby.core.grid.grid_file_name(outdir, label),
            "{}/{}_grid.json".format(outdir, label),
        )
        self.assertEqual(
            bilby.core.grid.grid_file_name(outdir, label, True),
            "{}/{}_grid.json.gz".format(outdir, label),
        )

    def test_fail_save_and_load(self):
        with self.assertRaises(ValueError):
            bilby.core.grid.Grid.read()

        with self.assertRaises(IOError):
            bilby.core.grid.Grid.read(filename="not/a/file.json")

    def test_fail_marginalize(self):
        with self.assertRaises(TypeError):
            self.grid.marginalize_posterior(parameters=2.4)

        with self.assertRaises(TypeError):
            self.grid.marginalize_posterior(not_parameters=4.7)

        with self.assertRaises(ValueError):
            self.grid.marginalize_posterior(parameters="jkgsd")

    def test_parameter_names(self):
        assert list(self.priors.keys()) == self.grid.parameter_names
        assert self.grid.n_dims == 2

    def test_no_marginalization(self):
        # test arrays are the same if no parameters are given to marginalize
        # over
        assert np.array_equal(
            self.grid.ln_likelihood,
            self.grid.marginalize_ln_likelihood(
                not_parameters=self.grid.parameter_names
            ),
        )

    def test_marginalization_shapes(self):
        assert len(self.grid.marginalize_ln_likelihood().shape) == 0

        marg1 = self.grid.marginalize_ln_likelihood(
            parameters=self.grid.parameter_names[0]
        )
        assert marg1.shape == (self.grid_size,)

        marg2 = self.grid.marginalize_ln_likelihood(
            parameters=self.grid.parameter_names[1]
        )
        assert marg2.shape == (self.grid_size,)

        assert self.grid.ln_likelihood.shape == (self.grid_size, self.grid_size)
        assert self.grid.ln_posterior.shape == (self.grid_size, self.grid_size)

    def test_marginalization_opposite(self):
        assert np.array_equal(
            self.grid.marginalize_ln_likelihood(
                parameters=self.grid.parameter_names[0]
            ),
            self.grid.marginalize_ln_likelihood(
                not_parameters=self.grid.parameter_names[1]
            ),
        )
        assert np.array_equal(
            self.grid.marginalize_ln_likelihood(
                parameters=self.grid.parameter_names[1]
            ),
            self.grid.marginalize_ln_likelihood(
                not_parameters=self.grid.parameter_names[0]
            ),
        )

    def test_max_marginalized_likelihood(self):
        # marginalised likelihoods should have max values of 1 (as they are not
        # properly normalised)
        assert (
            self.grid.marginalize_likelihood(self.grid.parameter_names[0]).max() == 1.0
        )
        assert (
            self.grid.marginalize_likelihood(self.grid.parameter_names[1]).max() == 1.0
        )

    def test_ln_evidence(self):
        assert np.isclose(self.grid.ln_evidence, self.expected_ln_evidence)

    def test_fail_grid_size(self):
        with self.assertRaises(TypeError):
            bilby.core.grid.Grid(
                label="label",
                outdir="outdir",
                priors=self.priors,
                grid_size=2.3,
                likelihood=self.likelihood,
                save=True,
            )

    def test_mesh_grid(self):
        assert self.grid.mesh_grid[0].shape == (self.grid_size, self.grid_size)
        assert (
            self.grid.mesh_grid[0][0, 0]
            == self.priors[self.grid.parameter_names[0]].minimum
        )
        assert (
            self.grid.mesh_grid[0][-1, -1]
            == self.priors[self.grid.parameter_names[1]].maximum
        )

    def test_different_grids(self):
        npoints = [10, 20]

        grid = bilby.core.grid.Grid(
            label="label",
            outdir="outdir",
            priors=self.priors,
            grid_size=npoints,
            likelihood=self.likelihood,
        )

        assert grid.mesh_grid[0].shape == tuple(npoints)
        assert (
            grid.mesh_grid[0][0, 0] == self.priors[self.grid.parameter_names[0]].minimum
        )
        assert (
            grid.mesh_grid[0][-1, -1]
            == self.priors[self.grid.parameter_names[1]].maximum
        )

        del grid

        npoints = {"x0": 15, "x1": 18}

        grid = bilby.core.grid.Grid(
            label="label",
            outdir="outdir",
            priors=self.priors,
            grid_size=npoints,
            likelihood=self.likelihood,
        )

        assert grid.mesh_grid[0].shape == (npoints["x0"], npoints["x1"])
        assert (
            grid.mesh_grid[0][0, 0] == self.priors[self.grid.parameter_names[0]].minimum
        )
        assert (
            grid.mesh_grid[0][-1, -1]
            == self.priors[self.grid.parameter_names[1]].maximum
        )

        del grid

        x0s = np.linspace(self.priors["x0"].minimum, self.priors["x0"].maximum, 13)
        x1s = np.linspace(self.priors["x0"].minimum, self.priors["x0"].maximum, 14)
        npoints = {"x0": x0s, "x1": x1s}

        grid = bilby.core.grid.Grid(
            label="label",
            outdir="outdir",
            priors=self.priors,
            grid_size=npoints,
            likelihood=self.likelihood,
        )

        assert grid.mesh_grid[0].shape == (len(x0s), len(x1s))
        assert (
            grid.mesh_grid[0][0, 0] == self.priors[self.grid.parameter_names[0]].minimum
        )
        assert (
            grid.mesh_grid[0][-1, -1]
            == self.priors[self.grid.parameter_names[1]].maximum
        )
        assert np.array_equal(grid.sample_points["x0"], x0s)
        assert np.array_equal(grid.sample_points["x1"], x1s)

    def test_save_and_load(self):
        filename = os.path.join("outdir", "test_output.json")

        self.grid.save_to_file(filename=filename)

        # load file
        newgrid = bilby.core.grid.Grid.read(filename=filename)

        assert newgrid.parameter_names == self.grid.parameter_names
        assert newgrid.n_dims == self.grid.n_dims
        assert np.array_equal(newgrid.mesh_grid[0], self.grid.mesh_grid[0])
        for par in newgrid.parameter_names:
            assert np.array_equal(
                newgrid.sample_points[par], self.grid.sample_points[par]
            )
        assert newgrid.ln_evidence == self.grid.ln_evidence
        assert np.array_equal(newgrid.ln_likelihood, self.grid.ln_likelihood)
        assert np.array_equal(newgrid.ln_posterior, self.grid.ln_posterior)

        del newgrid

        self.grid.save_to_file(overwrite=True, outdir="outdir")

        # load file
        newgrid = bilby.core.grid.Grid.read(outdir="outdir", label="label")

        assert newgrid.parameter_names == self.grid.parameter_names
        assert newgrid.n_dims == self.grid.n_dims
        assert np.array_equal(newgrid.mesh_grid[0], self.grid.mesh_grid[0])
        for par in newgrid.parameter_names:
            assert np.array_equal(
                newgrid.sample_points[par], self.grid.sample_points[par]
            )
        assert newgrid.ln_evidence == self.grid.ln_evidence
        assert np.array_equal(newgrid.ln_likelihood, self.grid.ln_likelihood)
        assert np.array_equal(newgrid.ln_posterior, self.grid.ln_posterior)

        del newgrid

    def test_save_and_load_gzip(self):
        filename = os.path.join("outdir", "test_output.json.gz")

        self.grid.save_to_file(filename=filename)

        # load file
        newgrid = bilby.core.grid.Grid.read(filename=filename)

        assert newgrid.parameter_names == self.grid.parameter_names
        assert newgrid.n_dims == self.grid.n_dims
        assert np.array_equal(newgrid.mesh_grid[0], self.grid.mesh_grid[0])
        for par in newgrid.parameter_names:
            assert np.array_equal(
                newgrid.sample_points[par], self.grid.sample_points[par]
            )
        assert newgrid.ln_evidence == self.grid.ln_evidence
        assert np.array_equal(newgrid.ln_likelihood, self.grid.ln_likelihood)
        assert np.array_equal(newgrid.ln_posterior, self.grid.ln_posterior)

        del newgrid

        self.grid.save_to_file(overwrite=True, outdir="outdir", gzip=True)

        # load file
        newgrid = bilby.core.grid.Grid.read(outdir="outdir", label="label", gzip=True)

        assert newgrid.parameter_names == self.grid.parameter_names
        assert newgrid.n_dims == self.grid.n_dims
        assert np.array_equal(newgrid.mesh_grid[0], self.grid.mesh_grid[0])
        for par in newgrid.parameter_names:
            assert np.array_equal(
                newgrid.sample_points[par], self.grid.sample_points[par]
            )
        assert newgrid.ln_evidence == self.grid.ln_evidence
        assert np.array_equal(newgrid.ln_likelihood, self.grid.ln_likelihood)
        assert np.array_equal(newgrid.ln_posterior, self.grid.ln_posterior)

        del newgrid