Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
prior.txt 6.14 KiB
======
Priors
======

---------------
Defining priors
---------------

Priors refer to the prior probability distributions for each model parameter.
Typically, these are passed into :ref:`run_sampler <run_sampler>` as a regular
`python dictionary
<https://docs.python.org/2/tutorial/datastructures.html#dictionaries>`_.

The keys of the priors objects should reference the model parameters, in
particular, the :code:`parameters` attribute of the :ref:`likelihood`. Each key
can be either

- fixed number, in which case the value is held fixed at this value. In effect,
  this is a Delta-function prior,
- or a :code:`bilby.prior.Prior` instance.

If the latter, it will be sampled during the parameter estimation. Here is a
simple example that sets a uniform prior for :code:`a`, and a fixed value for
:code:`b`::

   priors = {}
   priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a', latex_label='a')
   priors['b'] = 5

Notice, that the :code:`latex_label` is optional, but if given will be used
when generating plots. Latex label strings containing escape characters like :code:`\t`
should either be preceded by :code:`r'` or include an extra backslash. As an example,
either :code:`r'$\theta$'` or :code:`'$\\theta$'` is permissable. For a list of
recognized escape sequences, see the `python docs <https://docs.python.org/2.0/ref/strings.html>`_.



--------------------------
The bilby prior dictionary
--------------------------

The :code:`priors` passed into :code:`run_sampler` can just be a regular python
dictionary. However, we also provide a class :code:`bilby.core.prior.PriorDict`
which provides extra functionality. For example, to sample from the prior:

.. code:: python

   >>> priors = bilby.core.prior.PriorDict()
   >>> priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a')
   >>> priors['b'] = bilby.prior.Uniform(minimum=0, maximum=10, name='b')
   >>> priors.sample()
   {'a': 0.1234, 'b': 4.5232}

Here is the detailed API information:

.. autoclass:: bilby.core.prior.PriorDict
   :members:

   .. automethod:: __init__

-----------------------
Available prior classes
-----------------------

We have provided a number of standard priors. Here we document a few of them,
note that this list is incomplete.

.. autoclass:: bilby.core.prior.Uniform
   :members:
   :special-members:

.. autoclass:: bilby.core.prior.Gaussian
   :members:
   :special-members:

---------------------------
Multivariate Gaussian prior
---------------------------

We provide a prior class for correlated parameters in the form of a
`multivariate Gaussian distribution <https://en.wikipedia.org/wiki/Multivariate_normal_distribution>`_.
To set the prior you first must define the distribution using the
:class:`bilby.core.prior.MultivariateGaussianDist` class. This requires the names of the
correlated variables, their means, and either the covariance matrix or the correlation
matrix and standard deviations, e.g.:

.. code:: python

   >>> names = ['a', 'b']  # set the parameter names
   >>> mu = [0., 5.]  # the means of the parameters
   >>> cov = [[2., 0.7], [0.7, 3.]]  # the covariance matrix
   >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov)

It is also possible to define a mixture model of multiple multivariate Gaussian modes of
different weights if required, e.g.:

.. code:: python

   >>> names = ['a', 'b']  # set the parameter names
   >>> mu = [[0., 5.], [2., 7.]]  # the means of the parameters
   >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]]  # the covariance matrix
   >>> weights = [0.3, 0.7]  # weights of each mode
   >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)

The distribution can also have hard bounds on each parameter by supplying them.

The :class:`bilby.core.prior.MultivariateGaussianDist` class can then be passed to
a :class:`bilby.core.prior.MultivariateGaussian` prior for each parameter, e.g.:

.. code:: python

   >>> priors = dict()
   >>> priors['a'] = bilby.core.prior.MultivariateGaussian(mvg, 'a')
   >>> priors['b'] = bilby.core.prior.MultivariateGaussian(mvg, 'b')

The detailed API information for the distribution and prior classes are below:

.. autoclass:: bilby.core.prior.MultivariateGaussianDist
   :members:

.. autoclass:: bilby.core.prior.MultivariateGaussian
   :members:

-----------------------
Defining your own prior
-----------------------

You can define your own by subclassing the :code:`bilby.prior.Prior` class.

.. autoclass:: bilby.core.prior.Prior
   :members:
   :special-members:

-----------------
Prior Constraints
-----------------

Added v. 0.4.3

This allows cuts to be specified in the prior space.

You can provide the `PriorDict` a `conversion_function` and a set of `Constraint` priors to remove parts of the prior space.

*Note*: after doing this the prior probability will not be normalised.

Simple example
==============

Sample from uniform distributions in two parameters x and y with the condition x >= y.

First thing: define a function which generates z=x-y from x and y.

.. code:: python

    def convert_x_y_to_z(parameters):
        """
        Function to convert between sampled parameters and constraint parameter.

        Parameters
        ----------
        parameters: dict
            Dictionary containing sampled parameter values, 'x', 'y'.

        Returns
        -------
        dict: Dictionary with constraint parameter 'z' added.
        """
        converted_parameters = parameters.copy()
        converted_parameters['z'] = parameters['x'] - parameters['y']
        return converted_parameters

Create our prior:

.. code:: python

    from bilby.core.prior import PriorDict, Uniform, Constraint

    priors = PriorDict(conversion_function=convert_x_y_to_z)
    priors['x'] = Uniform(minimum=0, maximum=10)
    priors['y'] = Uniform(minimum=0, maximum=10)
    priors['z'] = Constraint(minimum=0, maximum=10)

Sample from this distribution and plot the samples.

.. code:: python

    import matplotlib.pyplot as plt

    samples = priors.sample(1000000)
    plt.hist2d(samples['x'], samples['y'], bins=100, cmap='Blues')
    plt.xlabel('$x$')
    plt.ylabel('$y$')
    plt.tight_layout()
    plt.show()
    plt.close()

------