Skip to content
Snippets Groups Projects
Commit 0bdc9737 authored by Gregory Ashton's avatar Gregory Ashton Committed by Moritz Huebner
Browse files

Minor bug fixing for dynesty check pointing

parent 935dd3fb
No related branches found
No related tags found
No related merge requests found
...@@ -35,10 +35,15 @@ class Dynesty(NestedSampler): ...@@ -35,10 +35,15 @@ class Dynesty(NestedSampler):
Stopping criteria Stopping criteria
verbose: Bool verbose: Bool
If true, print information information about the convergence during If true, print information information about the convergence during
check_point: bool,
If true, use check pointing.
check_point_delta_t: float (600) check_point_delta_t: float (600)
The approximate checkpoint period (in seconds). Should the run be The approximate checkpoint period (in seconds). Should the run be
interrupted, it can be resumed from the last checkpoint. Set to interrupted, it can be resumed from the last checkpoint. Set to
`None` to turn-off check pointing `None` to turn-off check pointing
n_check_point: int, optional (None)
The number of steps to take before check pointing (override
check_point_delta_t).
resume: bool resume: bool
If true, resume run from checkpoint (if available) If true, resume run from checkpoint (if available)
""" """
...@@ -58,21 +63,20 @@ class Dynesty(NestedSampler): ...@@ -58,21 +63,20 @@ class Dynesty(NestedSampler):
save_bounds=True) save_bounds=True)
def __init__(self, likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, def __init__(self, likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False,
skip_import_verification=False, n_check_point=None, check_point_delta_t=600, skip_import_verification=False, check_point=True, n_check_point=None, check_point_delta_t=600,
resume=True, **kwargs): resume=True, **kwargs):
NestedSampler.__init__(self, likelihood=likelihood, priors=priors, outdir=outdir, label=label, NestedSampler.__init__(self, likelihood=likelihood, priors=priors, outdir=outdir, label=label,
use_ratio=use_ratio, plot=plot, use_ratio=use_ratio, plot=plot,
skip_import_verification=skip_import_verification, skip_import_verification=skip_import_verification,
**kwargs) **kwargs)
self.n_check_point = n_check_point self.n_check_point = n_check_point
self.check_point = check_point
self.resume = resume self.resume = resume
if not self.n_check_point: if self.n_check_point is None:
# Set the checking pointing # If the log_likelihood_eval_time is not calculable then
# If the log_likelihood_eval_time was not able to be calculated # check_point is set to False.
# then n_check_point is set to None (no checkpointing)
if np.isnan(self._log_likelihood_eval_time): if np.isnan(self._log_likelihood_eval_time):
self.n_check_point = None self.check_point = False
# If n_check_point is not already set, set it checkpoint every 10 mins
n_check_point_raw = (check_point_delta_t / self._log_likelihood_eval_time) n_check_point_raw = (check_point_delta_t / self._log_likelihood_eval_time)
n_check_point_rnd = int(float("{:1.0g}".format(n_check_point_raw))) n_check_point_rnd = int(float("{:1.0g}".format(n_check_point_raw)))
self.n_check_point = n_check_point_rnd self.n_check_point = n_check_point_rnd
...@@ -148,7 +152,7 @@ class Dynesty(NestedSampler): ...@@ -148,7 +152,7 @@ class Dynesty(NestedSampler):
prior_transform=self.prior_transform, prior_transform=self.prior_transform,
ndim=self.ndim, **self.sampler_init_kwargs) ndim=self.ndim, **self.sampler_init_kwargs)
if self.n_check_point: if self.check_point:
out = self._run_external_sampler_with_checkpointing() out = self._run_external_sampler_with_checkpointing()
else: else:
out = self._run_external_sampler_without_checkpointing() out = self._run_external_sampler_without_checkpointing()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment