Skip to content
Snippets Groups Projects
Commit 141534a8 authored by Moritz's avatar Moritz
Browse files

Modified some of the values

parent a71bca57
No related branches found
No related tags found
1 merge request!332Resolve "Introduce conditional prior sets"
......@@ -11,9 +11,10 @@ def condition_function(reference_params, mass_1):
mass_1_min = 5
mass_1_max = 50
mass_1 = bilby.core.prior.PowerLaw(alpha=-2.5, minimum=mass_1_min, maximum=mass_1_max, name='mass_1')
mass_1 = bilby.core.prior.PowerLaw(alpha=-2.5, minimum=mass_1_min, maximum=mass_1_max, name='mass_1',
latex_label='$m_1$')
mass_2 = bilby.core.prior.ConditionalPowerLaw(alpha=-2.5, minimum=mass_1_min, maximum=mass_1_max, name='mass_2',
condition_func=condition_function)
latex_label='$m_2$', condition_func=condition_function)
correlated_dict = bilby.core.prior.ConditionalPriorDict(dictionary=dict(mass_1=mass_1, mass_2=mass_2))
......@@ -49,8 +50,8 @@ bilby.core.utils.setup_logger(outdir=outdir, label=label)
np.random.seed(88170235)
injection_parameters = dict(
mass_1=9., mass_2=7., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0,
phi_12=1.7, phi_jl=0.3, luminosity_distance=400., theta_jn=0.4, psi=2.659,
mass_1=9., mass_2=8.9, a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0,
phi_12=1.7, phi_jl=0.3, luminosity_distance=1200., theta_jn=0.4, psi=2.659,
phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108)
waveform_arguments = dict(waveform_approximant='IMRPhenomPv2',
......@@ -87,62 +88,3 @@ result = bilby.run_sampler(
# Make a corner plot.
result.plot_corner()
# mass_1 = bilby.core.prior.Uniform(5, 100)
# mass_2 = bilby.gw.prior.CorrelatedSecondaryMassPrior(minimum=5, maximum=100)
#
# correlated_priors = bilby.core.prior.CorrelatedPriorDict(dictionary=dict(mass_1=mass_1, mass_2=mass_2))
#
# samples = correlated_priors.sample(10)
#
# primary_masses = samples['mass_1']
# secondary_masses = samples['mass_2']
# for i in range(len(primary_masses)):
# if primary_masses[i] > secondary_masses[i]:
# print('True')
# else:
# print('False')
#
# sample = dict(mass_1=25, mass_2=20)
# print(correlated_priors.prob(sample))
# def correlation_func_a(mu, a=0):
# return mu + a**2 + 2 * a + 3
#
#
# def correlation_func_b(mu, a=0, b=0):
# return mu + 0.01 * a**2 + 0.01 * b**2 + 0.01 * a * b + 0.1 * b + 3
#
#
# a = bilby.core.prior.Gaussian(mu=0., sigma=1)
# b = bilby.core.prior.CorrelatedGaussian(mu=0., sigma=1, correlation_func=correlation_func_a)
# c = bilby.core.prior.CorrelatedGaussian(mu=0, sigma=1, correlation_func=correlation_func_b)
#
# correlated_uniform = bilby.core.prior.CorrelatedPriorDict(dictionary=dict(a=a, b=b, c=c))
#
# samples = correlated_uniform.sample(1000000)
#
# samples = np.array([samples['a'], samples['b'], samples['c']]).T
# corner.corner(np.array(samples))
# plt.show()
#
#
# def correlation_func_min_max(extrema_dict, a, b):
# maximum = extrema_dict['maximum'] + a**b
# minimum = np.log(b)
# return minimum, maximum
#
#
# a = bilby.core.prior.Uniform(minimum=0, maximum=1)
# b = bilby.core.prior.Uniform(minimum=1e-6, maximum=1e-1)
# c = bilby.core.prior.CorrelatedUniform(minimum=0, maximum=1, correlation_func=correlation_func_min_max)
#
# correlated_uniform = bilby.core.prior.CorrelatedPriorDict(dictionary=dict(a=a, b=b, c=c))
#
# samples = correlated_uniform.sample(1000000)
# samples = np.array([samples['a'], samples['b'], samples['c']]).T
# corner.corner(np.array(samples))
# plt.show()
#
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment