Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
286011fd
Commit
286011fd
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
bbh parameter filling uses likelihood rather than wg and ifos
parent
6e7a6c13
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!31
Change sampled parameters
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tupak/conversion.py
+38
-32
38 additions, 32 deletions
tupak/conversion.py
with
38 additions
and
32 deletions
tupak/conversion.py
+
38
−
32
View file @
286011fd
...
...
@@ -98,7 +98,7 @@ def convert_to_lal_binary_black_hole_parameters(parameters, search_keys, remove=
return
ignored_keys
def
generate_all_bbh_parameters
(
sample
,
waveform_generator
=
None
,
interferometers
=
None
,
priors
=
None
):
def
generate_all_bbh_parameters
(
sample
,
likelihood
=
None
,
priors
=
None
):
"""
From either a single sample or a set of samples fill in all missing BBH parameters, in place.
...
...
@@ -106,24 +106,21 @@ def generate_all_bbh_parameters(sample, waveform_generator=None, interferometers
----------
sample: dict or pandas.DataFrame
Samples to fill in with extra parameters, this may be either an injection or posterior samples.
waveform_generator: tupak.waveform_generator.WaveformGenerator, optional
If the waveform generator and interferometers are provided, the SNRs will be recorded.
interferometers: list, optional
List of tupak.detector.Interferometer objects.
If the waveform generator and interferometers are provided, the SNRs will be recorded.
likelihood: tupak.likelihood.Likelihood
Likelihood used for sampling, used for waveform and likelihood.interferometers.
priors: dict, optional
Dictionary of prior objects, used to fill in non-sampled parameters.
"""
if
waveform_generator
is
not
None
:
sample
[
'
reference_frequency
'
]
=
waveform_generator
.
parameters
[
'
reference_frequency
'
]
sample
[
'
waveform_approximant
'
]
=
waveform_generator
.
parameters
[
'
waveform_approximant
'
]
if
likelihood
is
not
None
:
sample
[
'
reference_frequency
'
]
=
likelihood
.
waveform_generator
.
parameters
[
'
reference_frequency
'
]
sample
[
'
waveform_approximant
'
]
=
likelihood
.
waveform_generator
.
parameters
[
'
waveform_approximant
'
]
fill_from_fixed_priors
(
sample
,
priors
)
convert_to_lal_binary_black_hole_parameters
(
sample
,
[
key
for
key
in
sample
.
keys
()],
remove
=
False
)
generate_non_standard_parameters
(
sample
)
generate_component_spins
(
sample
)
compute_snrs
(
sample
,
waveform_generator
,
interferometers
)
compute_snrs
(
sample
,
likelihood
)
def
fill_from_fixed_priors
(
sample
,
priors
):
...
...
@@ -194,39 +191,48 @@ def generate_component_spins(sample):
logging
.
warning
(
"
Component spin extraction failed.
"
)
def
compute_snrs
(
sample
,
waveform_generator
,
interferometers
):
def
compute_snrs
(
sample
,
likelihood
):
"""
Compute the optimal and matched filter snrs of all posterior samples.
"""
temp_sample
=
sample
.
copy
()
if
waveform_generator
is
not
None
and
interferometers
is
not
None
:
temp_sample
=
sample
if
likelihood
is
not
None
:
if
isinstance
(
temp_sample
,
dict
):
for
key
in
waveform_generator
.
parameters
.
keys
():
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
]
signal_polarizations
=
waveform_generator
.
frequency_domain_strain
()
for
interferometer
in
interferometers
:
signal
=
interferometer
.
get_detector_response
(
signal_polarizations
,
waveform_generator
.
parameters
)
for
key
in
likelihood
.
waveform_generator
.
parameters
.
keys
():
likelihood
.
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
]
signal_polarizations
=
likelihood
.
waveform_generator
.
frequency_domain_strain
()
for
interferometer
in
likelihood
.
interferometers
:
signal
=
interferometer
.
get_detector_response
(
signal_polarizations
,
likelihood
.
waveform_generator
.
parameters
)
sample
[
'
{}_matched_filter_snr
'
.
format
(
interferometer
.
name
)]
=
\
tupak
.
utils
.
matched_filter_snr_squared
(
signal
,
interferometer
,
waveform_generator
.
time_duration
)
**
0.5
likelihood
.
waveform_generator
.
time_duration
)
**
0.5
sample
[
'
{}_optimal_snr
'
.
format
(
interferometer
.
name
)]
=
tupak
.
utils
.
optimal_snr_squared
(
signal
,
interferometer
,
waveform_generator
.
time_duration
)
**
0.5
signal
,
interferometer
,
likelihood
.
waveform_generator
.
time_duration
)
**
0.5
else
:
logging
.
info
(
'
Computing SNRs for every sample, this may take some time.
'
)
matched_filter_snrs
=
{
interferometer
.
name
:
[]
for
interferometer
in
interferometers
}
optimal_snrs
=
{
interferometer
.
name
:
[]
for
interferometer
in
interferometers
}
all_interferometers
=
likelihood
.
interferometers
matched_filter_snrs
=
{
interferometer
.
name
:
[]
for
interferometer
in
all_interferometers
}
optimal_snrs
=
{
interferometer
.
name
:
[]
for
interferometer
in
all_interferometers
}
likelihoods
=
{
interferometer
.
name
:
[]
for
interferometer
in
all_interferometers
}
for
ii
in
range
(
len
(
temp_sample
)):
for
key
in
set
(
temp_sample
.
keys
()).
intersection
(
waveform_generator
.
parameters
.
keys
()):
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
][
ii
]
for
key
in
waveform_generator
.
search_parameter_keys
:
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
][
ii
]
signal_polarizations
=
waveform_generator
.
frequency_domain_strain
()
for
interferometer
in
interferometers
:
signal
=
interferometer
.
get_detector_response
(
signal_polarizations
,
waveform_generator
.
parameters
)
for
key
in
set
(
temp_sample
.
keys
()).
intersection
(
likelihood
.
waveform_generator
.
parameters
.
keys
()):
likelihood
.
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
][
ii
]
for
key
in
likelihood
.
waveform_generator
.
sampling_parameter_keys
:
likelihood
.
waveform_generator
.
parameters
[
key
]
=
temp_sample
[
key
][
ii
]
signal_polarizations
=
likelihood
.
waveform_generator
.
frequency_domain_strain
()
for
interferometer
in
all_interferometers
:
signal
=
interferometer
.
get_detector_response
(
signal_polarizations
,
likelihood
.
waveform_generator
.
parameters
)
matched_filter_snrs
[
interferometer
.
name
].
append
(
tupak
.
utils
.
matched_filter_snr_squared
(
signal
,
interferometer
,
waveform_generator
.
time_duration
)
**
0.5
)
signal
,
interferometer
,
likelihood
.
waveform_generator
.
time_duration
)
**
0.5
)
optimal_snrs
[
interferometer
.
name
].
append
(
tupak
.
utils
.
optimal_snr_squared
(
signal
,
interferometer
,
waveform_generator
.
time_duration
)
**
0.5
)
for
interferometer
in
interferometers
:
signal
,
interferometer
,
likelihood
.
waveform_generator
.
time_duration
)
**
0.5
)
for
interferometer
in
likelihood
.
interferometers
:
sample
[
'
{}_matched_filter_snr
'
.
format
(
interferometer
.
name
)]
=
matched_filter_snrs
[
interferometer
.
name
]
sample
[
'
{}_optimal_snr
'
.
format
(
interferometer
.
name
)]
=
optimal_snrs
[
interferometer
.
name
]
likelihood
.
interferometers
=
all_interferometers
print
([
interferometer
.
name
for
interferometer
in
likelihood
.
interferometers
])
else
:
logging
.
info
(
'
Not computing SNRs.
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment