Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
3b5e5c89
Commit
3b5e5c89
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
add updated hyperparameter likelihood
parent
4b558209
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!93
Update hyperpe
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tupak/core/likelihood.py
+89
-33
89 additions, 33 deletions
tupak/core/likelihood.py
with
89 additions
and
33 deletions
tupak/core/likelihood.py
+
89
−
33
View file @
3b5e5c89
...
...
@@ -100,45 +100,101 @@ class HyperparameterLikelihood(Likelihood):
Parameters
----------
sample
s: list
An
N-dimensional list of individual
sets of samples. Each set may have
posterior
s: list
An
list of pandas data frames of samples
sets of samples. Each set may have
a different size.
hyper_prior: `tupak.prior.Prior`
A prior distribution with a `parameters` argument pointing to the
hyperparameters to infer from the samples. These may need to be
hyperparameters to infer from the samples.
These may need to be
initialized to any arbitrary value, but this will not effect the
result.
run_prior: `tupak.prior.Prior`
The prior distribution used in the inidivudal inferences which resulted
in the set of samples.
model: func
Function which calculates the new prior probability for the data.
sampling_prior: func
Function which calculates the prior probability used to sample.
max_samples: int
Maximum number of samples to use from each set.
"""
def
__init__
(
self
,
sample
s
,
hyper_prior
,
run_prior
):
Likelihood
.
__init__
(
self
,
parameters
=
hyper_prior
.
__dict__
)
self
.
samples
=
sample
s
def
__init__
(
self
,
posterior
s
,
hyper_prior
,
model
,
sampling_prior
,
max_samples
=
1e100
):
self
.
parameters
=
model
.
parameters
self
.
posteriors
=
posterior
s
self
.
hyper_prior
=
hyper_prior
self
.
run_prior
=
run_prior
if
hasattr
(
hyper_prior
,
'
lnprob
'
)
and
hasattr
(
run_prior
,
'
lnprob
'
):
logging
.
info
(
"
Using log-probabilities in likelihood
"
)
self
.
log_likelihood
=
self
.
log_likelihood_using_lnprob
else
:
logging
.
info
(
"
Using probabilities in likelihood
"
)
self
.
log_likelihood
=
self
.
log_likelihood_using_prob
def
log_likelihood_using_lnprob
(
self
):
L
=
[]
self
.
hyper_prior
.
__dict__
.
update
(
self
.
parameters
)
for
samp
in
self
.
samples
:
f
=
self
.
hyper_prior
.
lnprob
(
samp
)
-
self
.
run_prior
.
lnprob
(
samp
)
L
.
append
(
logsumexp
(
f
))
return
np
.
sum
(
L
)
def
log_likelihood_using_prob
(
self
):
L
=
[]
self
.
hyper_prior
.
__dict__
.
update
(
self
.
parameters
)
for
samp
in
self
.
samples
:
L
.
append
(
np
.
sum
(
self
.
hyper_prior
.
prob
(
samp
)
/
self
.
run_prior
.
prob
(
samp
)))
return
np
.
sum
(
np
.
log
(
L
))
self
.
sampling_prior
=
sampling_prior
self
.
model
=
model
self
.
data
=
self
.
_resample_posteriors
(
max_samples
)
self
.
n_posteriors
=
min
(
np
.
shape
(
self
.
data
.
values
()[
0
]))
self
.
samples_per_posterior
=
max
(
np
.
shape
(
self
.
data
.
values
()[
0
]))
self
.
log_factor
=
-
self
.
n_posteriors
*
np
.
log
(
self
.
samples_per_posterior
)
def
log_likelihood
(
self
):
self
.
model
.
parameters
.
update
(
self
.
parameters
)
log_l
=
np
.
sum
(
np
.
log
(
np
.
sum
(
self
.
model
.
prob
(
self
.
data
)
/
self
.
sampling_prior
(
self
.
data
),
axis
=-
1
)))
+
self
.
log_factor
return
np
.
nan_to_num
(
log_l
)
def
_resample_posteriors
(
self
,
max_samples
=
1e100
):
for
posterior
in
self
.
posteriors
:
max_samples
=
min
(
len
(
posterior
),
max_samples
)
data
=
{
key
:
[]
for
key
in
self
.
posteriors
[
0
]}
for
posterior
in
self
.
posteriors
:
temp
=
posterior
.
sample
(
max_samples
)
for
key
in
data
:
data
[
key
].
append
(
temp
[
key
])
for
key
in
data
:
data
[
key
]
=
np
.
array
(
data
[
key
])
return
data
# class HyperparameterLikelihood(Likelihood):
# """ A likelihood for infering hyperparameter posterior distributions
#
# See Eq. (1) of https://arxiv.org/abs/1801.02699 for a definition.
#
# Parameters
# ----------
# samples: list
# An N-dimensional list of individual sets of samples. Each set may have
# a different size.
# hyper_prior: `tupak.prior.Prior`
# A prior distribution with a `parameters` argument pointing to the
# hyperparameters to infer from the samples. These may need to be
# initialized to any arbitrary value, but this will not effect the
# result.
# run_prior: `tupak.prior.Prior`
# The prior distribution used in the inidivudal inferences which resulted
# in the set of samples.
#
# """
#
# def __init__(self, samples, hyper_prior, run_prior):
# Likelihood.__init__(self, parameters=hyper_prior.__dict__)
# self.samples = samples
# self.hyper_prior = hyper_prior
# self.run_prior = run_prior
# if hasattr(hyper_prior, 'lnprob') and hasattr(run_prior, 'lnprob'):
# logging.info("Using log-probabilities in likelihood")
# self.log_likelihood = self.log_likelihood_using_lnprob
# else:
# logging.info("Using probabilities in likelihood")
# self.log_likelihood = self.log_likelihood_using_prob
#
# def log_likelihood_using_lnprob(self):
# L = []
# self.hyper_prior.__dict__.update(self.parameters)
# for samp in self.samples:
# f = self.hyper_prior.lnprob(samp) - self.run_prior.lnprob(samp)
# L.append(logsumexp(f))
# return np.sum(L)
#
# def log_likelihood_using_prob(self):
# L = []
# self.hyper_prior.__dict__.update(self.parameters)
# for samp in self.samples:
# L.append(
# np.sum(self.hyper_prior.prob(samp) /
# self.run_prior.prob(samp)))
# return np.sum(np.log(L))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment