Skip to content
Snippets Groups Projects
Commit 42523fb1 authored by Moritz Huebner's avatar Moritz Huebner
Browse files

Bayesian model dimensionality

parent b26a5a98
No related branches found
No related tags found
No related merge requests found
......@@ -535,6 +535,19 @@ class Result(object):
"""
return self.posterior_volume / self.prior_volume(priors)
@property
def bayesian_model_dimensionality(self):
""" Characterises how many parameters are effectively constraint by the data
See <https://arxiv.org/abs/1903.06682>
Returns
-------
float: The model dimensionality
"""
return 2 * (np.mean(self.posterior['log_likelihood']**2) -
np.mean(self.posterior['log_likelihood'])**2)
def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
quantiles=(0.16, 0.84)):
""" Calculate the median and error bar for a given key
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment