Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
4a0f31b5
Commit
4a0f31b5
authored
6 years ago
by
Nikhil Sarin
Committed by
Moritz Huebner
6 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Calculating SNR for ROQ
parent
c86cb568
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
bilby/gw/conversion.py
+10
-12
10 additions, 12 deletions
bilby/gw/conversion.py
bilby/gw/likelihood.py
+101
-64
101 additions, 64 deletions
bilby/gw/likelihood.py
with
111 additions
and
76 deletions
bilby/gw/conversion.py
+
10
−
12
View file @
4a0f31b5
...
...
@@ -954,23 +954,23 @@ def compute_snrs(sample, likelihood):
ifo
.
matched_filter_snr
(
signal
=
signal
)
sample
[
'
{}_optimal_snr
'
.
format
(
ifo
.
name
)]
=
\
ifo
.
optimal_snr_squared
(
signal
=
signal
)
**
0.5
else
:
logger
.
info
(
'
Computing SNRs for every sample, this may take some time.
'
)
all_interferometers
=
likelihood
.
interferometers
matched_filter_snrs
=
{
ifo
.
name
:
[]
for
ifo
in
all_interferometers
}
optimal_snrs
=
{
ifo
.
name
:
[]
for
ifo
in
all_interferometers
}
matched_filter_snrs
=
{
ifo
.
name
:
[]
for
ifo
in
likelihood
.
interferometers
}
optimal_snrs
=
{
ifo
.
name
:
[]
for
ifo
in
likelihood
.
interferometers
}
for
ii
in
range
(
len
(
sample
)):
signal_polarizations
=
\
likelihood
.
waveform_generator
.
frequency_domain_strain
(
dict
(
sample
.
iloc
[
ii
]))
for
ifo
in
all_interferometers
:
signal
=
ifo
.
get_detector_response
(
signal_polarizations
,
sample
.
iloc
[
ii
])
matched_filter_snrs
[
ifo
.
name
].
append
(
ifo
.
matched_filter_snr
(
signal
=
signal
))
optimal_snrs
[
ifo
.
name
].
append
(
ifo
.
optimal_snr_squared
(
signal
=
signal
)
**
0.5
)
likelihood
.
parameters
.
update
(
sample
.
iloc
[
ii
])
for
ifo
in
likelihood
.
interferometers
:
per_detector_snr
=
likelihood
.
calculate_snrs
(
signal_polarizations
,
ifo
)
matched_filter_snrs
[
ifo
.
name
].
append
(
per_detector_snr
.
complex_matched_filter_snr
.
real
)
optimal_snrs
[
ifo
.
name
].
append
(
per_detector_snr
.
optimal_snr_squared
**
0.5
)
for
ifo
in
likelihood
.
interferometers
:
sample
[
'
{}_matched_filter_snr
'
.
format
(
ifo
.
name
)]
=
\
...
...
@@ -978,8 +978,6 @@ def compute_snrs(sample, likelihood):
sample
[
'
{}_optimal_snr
'
.
format
(
ifo
.
name
)]
=
\
optimal_snrs
[
ifo
.
name
]
likelihood
.
interferometers
=
all_interferometers
else
:
logger
.
debug
(
'
Not computing SNRs.
'
)
...
...
This diff is collapsed.
Click to expand it.
bilby/gw/likelihood.py
+
101
−
64
View file @
4a0f31b5
...
...
@@ -21,6 +21,7 @@ from .prior import BBHPriorDict
from
.source
import
lal_binary_black_hole
from
.utils
import
noise_weighted_inner_product
,
build_roq_weights
,
blockwise_dot_product
from
.waveform_generator
import
WaveformGenerator
from
collections
import
namedtuple
class
GravitationalWaveTransient
(
likelihood
.
Likelihood
):
...
...
@@ -124,6 +125,40 @@ class GravitationalWaveTransient(likelihood.Likelihood):
"
waveform_generator.
"
.
format
(
attr
))
setattr
(
self
.
waveform_generator
,
attr
,
ifo_attr
)
def
calculate_snrs
(
self
,
waveform_polarizations
,
interferometer
):
"""
Compute the snrs
Parameters
----------
waveform_polarizations: dict
A dictionary of waveform polarizations and the corresponding array
interferometer: bilby.gw.detector.Interferometer
The bilby interferometer object
"""
signal
=
interferometer
.
get_detector_response
(
waveform_polarizations
,
self
.
parameters
)
d_inner_h
=
interferometer
.
inner_product
(
signal
=
signal
)
optimal_snr_squared
=
interferometer
.
optimal_snr_squared
(
signal
=
signal
)
complex_matched_filter_snr
=
d_inner_h
/
(
optimal_snr_squared
**
0.5
)
CalculatedSNRs
=
namedtuple
(
'
CalculatedSNRs
'
,
[
'
d_inner_h
'
,
'
optimal_snr_squared
'
,
'
complex_matched_filter_snr
'
,
'
d_inner_h_squared_tc_array
'
])
if
self
.
time_marginalization
:
d_inner_h_squared_tc_array
=
\
4
/
self
.
waveform_generator
.
duration
*
np
.
fft
.
fft
(
signal
[
0
:
-
1
]
*
interferometer
.
frequency_domain_strain
.
conjugate
()[
0
:
-
1
]
/
interferometer
.
power_spectral_density_array
[
0
:
-
1
])
else
:
d_inner_h_squared_tc_array
=
None
return
CalculatedSNRs
(
d_inner_h
=
d_inner_h
,
optimal_snr_squared
=
optimal_snr_squared
,
complex_matched_filter_snr
=
complex_matched_filter_snr
,
d_inner_h_squared_tc_array
=
d_inner_h_squared_tc_array
)
def
_check_prior_is_set
(
self
,
key
):
if
key
not
in
self
.
priors
or
not
isinstance
(
self
.
priors
[
key
],
Prior
):
...
...
@@ -167,23 +202,23 @@ class GravitationalWaveTransient(likelihood.Likelihood):
if
waveform_polarizations
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
d_inner_h
=
0
optimal_snr_squared
=
0
d_inner_h
=
0.
optimal_snr_squared
=
0.
complex_matched_filter_snr
=
0.
d_inner_h_squared_tc_array
=
np
.
zeros
(
self
.
interferometers
.
frequency_array
[
0
:
-
1
].
shape
,
dtype
=
np
.
complex128
)
for
interferometer
in
self
.
interferometers
:
signal_ifo
=
interferometer
.
get_detector_response
(
waveform_polarizations
,
self
.
parameters
)
per_detector_snr
=
self
.
calculate_snrs
(
waveform_polarizations
,
interferometer
)
d_inner_h
+=
per_detector_snr
.
d_inner_h
optimal_snr_squared
+=
per_detector_snr
.
optimal_snr_squared
complex_matched_filter_snr
+=
per_detector_snr
.
complex_matched_filter_snr
d_inner_h
+=
interferometer
.
inner_product
(
signal
=
signal_ifo
)
optimal_snr_squared
+=
interferometer
.
optimal_snr_squared
(
signal
=
signal_ifo
)
if
self
.
time_marginalization
:
d_inner_h_squared_tc_array
+=
\
4
/
self
.
waveform_generator
.
duration
*
np
.
fft
.
fft
(
signal_ifo
[
0
:
-
1
]
*
interferometer
.
frequency_domain_strain
.
conjugate
()[
0
:
-
1
]
/
interferometer
.
power_spectral_density_array
[
0
:
-
1
])
d_inner_h_squared_tc_array
+=
per_detector_snr
.
d_inner_h_squared_tc_array
if
self
.
time_marginalization
:
...
...
@@ -448,63 +483,65 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
self
.
frequency_nodes_linear
=
\
waveform_generator
.
waveform_arguments
[
'
frequency_nodes_linear
'
]
def
log_likelihood_ratio
(
self
):
optimal_snr_squared
=
0.
d_inner_h
=
0.
waveform
=
self
.
waveform_generator
.
frequency_domain_strain
(
self
.
parameters
)
if
waveform
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
def
calculate_snrs
(
self
,
signal
,
interferometer
):
"""
Compute the snrs for ROQ
for
ifo
in
self
.
interferometers
:
Parameters
----------
signal: waveform
f_plus
=
ifo
.
antenna_response
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
self
.
parameters
[
'
geocent_time
'
],
self
.
parameters
[
'
psi
'
],
'
plus
'
)
f_cross
=
ifo
.
antenna_response
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
self
.
parameters
[
'
geocent_time
'
],
self
.
parameters
[
'
psi
'
],
'
cross
'
)
dt
=
ifo
.
time_delay_from_geocenter
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
ifo
.
strain_data
.
start_time
)
ifo_time
=
self
.
parameters
[
'
geocent_time
'
]
+
dt
-
\
ifo
.
strain_data
.
start_time
h_plus_linear
=
f_plus
*
waveform
[
'
linear
'
][
'
plus
'
]
h_cross_linear
=
f_cross
*
waveform
[
'
linear
'
][
'
cross
'
]
h_plus_quadratic
=
f_plus
*
waveform
[
'
quadratic
'
][
'
plus
'
]
h_cross_quadratic
=
f_cross
*
waveform
[
'
quadratic
'
][
'
cross
'
]
indices
,
in_bounds
=
self
.
_closest_time_indices
(
ifo_time
,
self
.
time_samples
)
if
not
in_bounds
:
return
np
.
nan_to_num
(
-
np
.
inf
)
d_inner_h_tc_array
=
np
.
einsum
(
'
i,ji->j
'
,
np
.
conjugate
(
h_plus_linear
+
h_cross_linear
),
self
.
weights
[
ifo
.
name
+
'
_linear
'
][
indices
])
d_inner_h
+=
interp1d
(
self
.
time_samples
[
indices
],
d_inner_h_tc_array
,
kind
=
'
cubic
'
)(
ifo_time
)
optimal_snr_squared
+=
\
np
.
vdot
(
np
.
abs
(
h_plus_quadratic
+
h_cross_quadratic
)
**
2
,
self
.
weights
[
ifo
.
name
+
'
_quadratic
'
])
interferometer: interferometer object
if
self
.
distance_marginalization
:
rho_mf_ref
,
rho_opt_ref
=
self
.
_setup_rho
(
d_inner_h
,
optimal_snr_squared
)
if
self
.
phase_marginalization
:
rho_mf_ref
=
abs
(
rho_mf_ref
)
log_l
=
self
.
_interp_dist_margd_loglikelihood
(
rho_mf_ref
.
real
,
rho_opt_ref
)[
0
]
else
:
if
self
.
phase_marginalization
:
d_inner_h
=
self
.
_bessel_function_interped
(
abs
(
d_inner_h
))
log_l
=
d_inner_h
-
optimal_snr_squared
/
2
"""
return
log_l
.
real
f_plus
=
interferometer
.
antenna_response
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
self
.
parameters
[
'
geocent_time
'
],
self
.
parameters
[
'
psi
'
],
'
plus
'
)
f_cross
=
interferometer
.
antenna_response
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
self
.
parameters
[
'
geocent_time
'
],
self
.
parameters
[
'
psi
'
],
'
cross
'
)
dt
=
interferometer
.
time_delay_from_geocenter
(
self
.
parameters
[
'
ra
'
],
self
.
parameters
[
'
dec
'
],
interferometer
.
strain_data
.
start_time
)
ifo_time
=
self
.
parameters
[
'
geocent_time
'
]
+
dt
-
\
interferometer
.
strain_data
.
start_time
h_plus_linear
=
f_plus
*
signal
[
'
linear
'
][
'
plus
'
]
h_cross_linear
=
f_cross
*
signal
[
'
linear
'
][
'
cross
'
]
h_plus_quadratic
=
f_plus
*
signal
[
'
quadratic
'
][
'
plus
'
]
h_cross_quadratic
=
f_cross
*
signal
[
'
quadratic
'
][
'
cross
'
]
CalculatedSNRs
=
namedtuple
(
'
CalculatedSNRs
'
,
[
'
d_inner_h
'
,
'
optimal_snr_squared
'
,
'
complex_matched_filter_snr
'
,
'
d_inner_h_squared_tc_array
'
])
indices
,
in_bounds
=
self
.
_closest_time_indices
(
ifo_time
,
self
.
time_samples
)
if
not
in_bounds
:
return
CalculatedSNRs
(
d_inner_h
=
np
.
nan_to_num
(
-
np
.
inf
),
optimal_snr_squared
=
0
,
complex_matched_filter_snr
=
np
.
nan_to_num
(
-
np
.
inf
),
d_inner_h_squared_tc_array
=
None
)
d_inner_h_tc_array
=
np
.
einsum
(
'
i,ji->j
'
,
np
.
conjugate
(
h_plus_linear
+
h_cross_linear
),
self
.
weights
[
interferometer
.
name
+
'
_linear
'
][
indices
])
d_inner_h
=
interp1d
(
self
.
time_samples
[
indices
],
d_inner_h_tc_array
,
kind
=
'
cubic
'
)(
ifo_time
)
optimal_snr_squared
=
\
np
.
vdot
(
np
.
abs
(
h_plus_quadratic
+
h_cross_quadratic
)
**
2
,
self
.
weights
[
interferometer
.
name
+
'
_quadratic
'
])
complex_matched_filter_snr
=
d_inner_h
/
(
optimal_snr_squared
**
0.5
)
d_inner_h_squared_tc_array
=
None
return
CalculatedSNRs
(
d_inner_h
=
d_inner_h
,
optimal_snr_squared
=
optimal_snr_squared
,
complex_matched_filter_snr
=
complex_matched_filter_snr
,
d_inner_h_squared_tc_array
=
d_inner_h_squared_tc_array
)
@staticmethod
def
_closest_time_indices
(
time
,
samples
):
...
...
This diff is collapsed.
Click to expand it.
Colm Talbot
@colm.talbot
mentioned in issue
parallel_bilby#33 (closed)
·
4 years ago
mentioned in issue
parallel_bilby#33 (closed)
mentioned in issue parallel_bilby#33
Toggle commit list
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment