Skip to content
Snippets Groups Projects
Commit 5eb0c97e authored by Colm Talbot's avatar Colm Talbot
Browse files

Merge branch 'master' into 'add-ptemcee-sampler'

# Conflicts:
#   peyote/utils.py
parents 1c879b8c 9f7b92d1
No related branches found
No related tags found
1 merge request!24Add ptemcee sampler
Pipeline #
......@@ -24,6 +24,7 @@ exitcode-jessie:
- coverage run test/prior_tests.py
- coverage run test/tests.py
- coverage run test/waveform_generator_tests.py
- coverage run test/noise_realisation_tests.py
- coverage html --include=peyote/*
- coverage-badge -o coverage.svg
artifacts:
......
......@@ -495,12 +495,13 @@ def get_inteferometer(
utils.check_directory_exists_and_if_not_mkdir(outdir)
strain = TimeSeries.fetch_open_data(
name, center_time-T/2, center_time+T/2, cache=cache, **kwargs)
strain = get_open_strain_data(
name, center_time-T/2, center_time+T/2, outdir=outdir, cache=cache,
**kwargs)
strain_psd = TimeSeries.fetch_open_data(
strain_psd = get_open_strain_data(
name, center_time+psd_offset, center_time+psd_offset+psd_duration,
cache=cache, **kwargs)
outdir=outdir, cache=cache, **kwargs)
sampling_frequency = int(strain.sample_rate.value)
......@@ -552,3 +553,17 @@ def get_inteferometer(
fig.savefig('{}/{}_frequency_domain_data.png'.format(outdir, name))
return interferometer, sampling_frequency, time_duration
def get_open_strain_data(name, t1, t2, outdir, cache=False, **kwargs):
filename = '{}/{}_{}_{}.txt'.format(outdir, name, t1, t2)
if os.path.isfile(filename) and cache:
logging.info('Using cached data from {}'.format(filename))
strain = TimeSeries.read(filename)
else:
logging.info('Fetching open data ...')
strain = TimeSeries.fetch_open_data(name, t1, t2, **kwargs)
logging.info('Saving data to {}'.format(filename))
strain.write(filename)
return strain
#!/bin/python
from __future__ import division
import numpy as np
from scipy.interpolate import interp1d
......@@ -57,15 +58,15 @@ class Prior(object):
elif self.name == 'mchirp':
return '$\mathcal{M}$'
elif self.name == 'q':
return 'q'
return '$q$'
elif self.name == 'a1':
return 'a_1'
return '$a_1$'
elif self.name == 'a2':
return 'a_2'
return '$a_2$'
elif self.name == 'tilt1':
return 'tilt_1'
return '$\\text{tilt}_1$'
elif self.name == 'tilt2':
return 'tilt_2'
return '$\\text{tilt}_2$'
elif self.name == 'phi1':
return '$\phi_1$'
elif self.name == 'phi2':
......@@ -262,17 +263,17 @@ def create_default_prior(name):
prior = PowerLaw(name=name, alpha=0, bounds=(5, 100))
elif name == 'q':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 1))
elif name == 'a1':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 1))
elif name == 'a2':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 1))
elif name == 'tilt1':
elif name == 'a_1':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 0.8))
elif name == 'a_2':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 0.8))
elif name == 'tilt_1':
prior = Sine(name=name)
elif name == 'tilt2':
elif name == 'tilt_2':
prior = Sine(name=name)
elif name == 'phi1':
elif name == 'phi_1':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 2 * np.pi))
elif name == 'phi2':
elif name == 'phi_2':
prior = PowerLaw(name=name, alpha=0, bounds=(0, 2 * np.pi))
elif name == 'luminosity_distance':
prior = PowerLaw(name=name, alpha=2, bounds=(1e2, 5e3))
......
......@@ -100,6 +100,15 @@ class Sampler(object):
def kwargs(self, kwargs):
self.__kwargs = kwargs
def verify_kwargs_against_external_sampler_function(self):
args = inspect.getargspec(self.external_sampler_function).args
for user_input in self.kwargs.keys():
if user_input not in args:
logging.warning(
"Supplied argument '{}' not an argument of '{}', removing."
.format(user_input, self.external_sampler_function))
self.kwargs.pop(user_input)
def initialise_parameters(self):
for key in self.priors:
......@@ -195,14 +204,22 @@ class Nestle(Sampler):
@kwargs.setter
def kwargs(self, kwargs):
self.__kwargs = kwargs
self.__kwargs = dict(verbose=True, method='multi')
self.__kwargs.update(kwargs)
if 'npoints' not in self.__kwargs:
for equiv in ['nlive', 'nlives', 'n_live_points']:
if equiv in self.__kwargs:
self.__kwargs['npoints'] = self.__kwargs.pop(equiv)
def run_sampler(self):
nestle = self.external_sampler
self.external_sampler_function = nestle.sample
if self.kwargs.get('verbose', True):
self.kwargs['callback'] = nestle.print_progress
self.verify_kwargs_against_external_sampler_function()
out = nestle.sample(
out = self.external_sampler_function(
loglikelihood=self.log_likelihood,
prior_transform=self.prior_transform,
ndim=self.ndim, **self.kwargs)
......@@ -250,9 +267,18 @@ class Pymultinest(Sampler):
if self.__kwargs['outputfiles_basename'].endswith('/') is False:
self.__kwargs['outputfiles_basename'] = '{}/'.format(
self.__kwargs['outputfiles_basename'])
if 'n_live_points' not in self.__kwargs:
for equiv in ['nlive', 'nlives', 'npoints', 'npoint']:
if equiv in self.__kwargs:
self.__kwargs['n_live_points'] = self.__kwargs.pop(equiv)
def run_sampler(self):
pymultinest = self.external_sampler
self.external_sampler_function = pymultinest.run
self.verify_kwargs_against_external_sampler_function()
# Note: pymultinest.solve adds some extra steps, but underneath
# we are calling pymultinest.run - hence why it is used in checking
# the arguments.
out = pymultinest.solve(
LogLikelihood=self.log_likelihood, Prior=self.prior_transform,
n_dims=self.ndim, **self.kwargs)
......@@ -339,7 +365,11 @@ def run_sampler(likelihood, priors, label='label', outdir='outdir',
**sampler_kwargs)
result = sampler.run_sampler()
result.noise_logz = likelihood.noise_log_likelihood()
result.log_bayes_factor = result.logz - result.noise_logz
if use_ratio:
result.log_bayes_factor = result.logz
result.logz = result.log_bayes_factor + result.noise_logz
else:
result.log_bayes_factor = result.logz - result.noise_logz
result.injection_parameters = injection_parameters
result.save_to_file(outdir=outdir, label=label)
return result, sampler
......
from __future__ import division, print_function
try:
import lal
except ImportError:
raise ImportWarning("You do not have lalsuite installed currently. You will not be able to use some of the "
"prebuilt functions.")
try:
import lalsimulation as lalsim
except ImportError:
raise ImportWarning("You do not have lalsuite installed currently. You will not be able to use some of the "
"prebuilt functions.")
from . import utils
def lal_binary_black_hole(
frequency_array, mass_1, mass_2, luminosity_distance, spin11, spin12, spin13, spin21, spin22, spin23,
frequency_array, mass_1, mass_2, luminosity_distance, a_1, tilt_1, phi_1, a_2, tilt_2, phi_2,
iota, phase, waveform_approximant, reference_frequency, ra, dec,
geocent_time, psi):
""" A Binary Black Hole waveform model using lalsimulation """
luminosity_distance = luminosity_distance * 1e6 * lal.PC_SI
if mass_2 > mass_1:
return {'plus': 0, 'cross': 0}
mass_1 = mass_1 * lal.MSUN_SI
mass_2 = mass_2 * lal.MSUN_SI
luminosity_distance = luminosity_distance * 1e6 * utils.parsec
mass_1 = mass_1 * utils.solar_mass
mass_2 = mass_2 * utils.solar_mass
spin_1x, spin_1y, spin_1z = utils.spherical_to_cartesian(a_1, tilt_1, phi_1)
spin_2x, spin_2y, spin_2z = utils.spherical_to_cartesian(a_2, tilt_2, phi_2)
longitude_ascending_nodes = 0.0
eccentricity = 0.0
mean_per_ano = 0.0
waveform_dictionary = lal.CreateDict()
waveform_dictionary = None
approximant = lalsim.GetApproximantFromString(waveform_approximant)
......@@ -36,8 +37,8 @@ def lal_binary_black_hole(
delta_frequency = frequency_array[1] - frequency_array[0]
hplus, hcross = lalsim.SimInspiralChooseFDWaveform(
mass_1, mass_2, spin11, spin12, spin13, spin21, spin22,
spin23, luminosity_distance, iota, phase,
mass_1, mass_2, spin_1x, spin_1y, spin_1z, spin_2x, spin_2y,
spin_2z, luminosity_distance, iota, phase,
longitude_ascending_nodes, eccentricity, mean_per_ano, delta_frequency,
frequency_minimum, frequency_maximum, reference_frequency,
waveform_dictionary, approximant)
......
......@@ -2,11 +2,12 @@ from __future__ import division
import logging
import os
import numpy as np
from astropy.time import Time
from math import fmod
# Constants
speed_of_light = 299792458.0 # speed of light in m/s
parsec = 3.085677581 * 1e16
solar_mass = 1.98855 * 1e30
def get_sampling_frequency(time_series):
"""
......@@ -39,23 +40,32 @@ def ra_dec_to_theta_phi(ra, dec, gmst):
return theta, phi
def gps_time_to_gmst(time):
def gps_time_to_gmst(gps_time):
"""
Convert gps time to Greenwich mean sidereal time in radians
This method assumes a constant rotation rate of earth since 00:00:00, 1 Jan. 2000
A correction has been applied to give the exact correct value for 00:00:00, 1 Jan. 2018
Error accumulates at a rate of ~0.0001 radians/decade.
Input:
time - gps time
Output:
gmst - Greenwich mean sidereal time in radians
"""
gps_time = Time(time, format='gps', scale='utc')
gmst = gps_time.sidereal_time('mean', 'greenwich').value * np.pi / 12
omega_earth = 2 * np.pi * (1 / 365.2425 + 1) / 86400.
gps_2000 = 630720013.
gmst_2000 = (6 + 39. / 60 + 51.251406103947375 / 3600) * np.pi / 12
correction_2018 = -0.00017782487379358614
sidereal_time = omega_earth * (gps_time - gps_2000) + gmst_2000 + correction_2018
gmst = fmod(sidereal_time, 2 * np.pi)
return gmst
def create_fequency_series(sampling_frequency, duration):
"""
Create a frequency series with the correct length and spacing.
Create a frequency series with the correct length and spacing.
:param sampling_frequency: sampling frequency
:param duration: duration of data
:return: frequencies, frequency series
......@@ -81,8 +91,8 @@ def create_fequency_series(sampling_frequency, duration):
def create_white_noise(sampling_frequency, duration):
"""
Create white_noise which is then coloured by a given PSD
:param sampling_frequency: sampling frequency
:param duration: duration of data
"""
......@@ -291,6 +301,19 @@ def get_progress_bar(module='tqdm'):
return tqdm
def spherical_to_cartesian(radius, theta, phi):
"""
Convert from spherical coordinates to cartesian.
:param radius: radial coordinate
:param theta: axial coordinate
:param phi: azimuthal coordinate
:return cartesian: cartesian vector
"""
cartesian = [radius * np.sin(theta) * np.cos(phi), radius * np.sin(theta) * np.sin(phi), radius * np.cos(theta)]
return cartesian
def check_directory_exists_and_if_not_mkdir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
......@@ -298,3 +321,26 @@ def check_directory_exists_and_if_not_mkdir(directory):
else:
logging.debug('Directory {} exists'.format(directory))
def inner_product(aa, bb, frequency, PSD):
'''
Calculate the inner product defined in the matched filter statistic
arguments:
aai, bb: single-sided Fourier transform, created, e.g., by the nfft function above
frequency: an array of frequencies associated with aa, bb, also returned by nfft
PSD: PSD object
Returns:
The matched filter inner product for aa and bb
'''
PSD_interp = PSD.power_spectral_density_interpolated(frequency)
# caluclate the inner product
integrand = np.conj(aa) * bb / PSD_interp
df = frequency[1] - frequency[0]
integral = np.sum(integrand) * df
product = 4. * np.real(integral)
return product
......@@ -23,11 +23,11 @@ class WaveformGenerator(object):
"""
def __init__(self, source_model, sampling_frequency=4096, time_duration=1,
def __init__(self, frequency_domain_source_model, sampling_frequency=4096, time_duration=1,
parameters=None):
self.time_duration = time_duration
self.sampling_frequency = sampling_frequency
self.source_model = source_model
self.source_model = frequency_domain_source_model
self.parameters = parameters
self.__frequency_array_updated = False
self.__time_array_updated = False
......
import numpy as np
import unittest
from context import peyote
class TestNoiseRealisation(unittest.TestCase):
def test_averaged_noise(self):
time_duration = 1.
sampling_frequency = 4096.
factor = np.sqrt(2./time_duration)
navg = 1000
psd_avg = 0
H1 = peyote.detector.H1
for x in range(0, navg):
H1_hf_noise, frequencies = H1.power_spectral_density.get_noise_realisation(sampling_frequency,
time_duration)
H1.set_data(sampling_frequency, time_duration, frequency_domain_strain=H1_hf_noise)
hf_tmp = H1.data
psd_avg += abs(hf_tmp)**2
psd_avg = psd_avg/navg
asd_avg = np.sqrt(abs(psd_avg))
a = H1.amplitude_spectral_density_array/factor
b = asd_avg
self.assertTrue(np.isclose(a[2]/b[2], 1.00, atol=1e-1))
def test_noise_normalisation(self):
time_duration = 1.
sampling_frequency = 4096.
number_of_samples = int(np.round(time_duration*sampling_frequency))
time_array = (1./sampling_frequency) * np.linspace(0, number_of_samples, number_of_samples)
# generate some toy-model signal for matched filtering SNR testing
navg = 10000
snr = np.zeros(navg)
mu = np.exp(-(time_array-time_duration/2.)**2 / (2.*0.1**2)) * np.sin(2*np.pi*100*time_array)
muf, frequency_array = peyote.utils.nfft(mu, sampling_frequency)
for x in range(0, navg):
H1 = peyote.detector.H1
H1_hf_noise, frequencies = H1.power_spectral_density.get_noise_realisation(sampling_frequency, time_duration)
H1.set_data(sampling_frequency, time_duration,frequency_domain_strain=H1_hf_noise)
hf_tmp = H1.data
Sh = H1.power_spectral_density
snr[x] = peyote.utils.inner_product(hf_tmp, muf, frequency_array, Sh) / np.sqrt(peyote.utils.inner_product(muf, muf, frequency_array, Sh))
self.assertTrue(np.isclose(np.std(snr), 1.00, atol=1e-2))
......@@ -17,7 +17,8 @@ def gaussian_frequency_domain_strain_2(frequency_array, a, m, s, ra, dec, geocen
class TestWaveformGeneratorInstantiationWithoutOptionalParameters(unittest.TestCase):
def setUp(self):
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(source_model=gaussian_frequency_domain_strain)
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.simulation_parameters = dict(amplitude=1e-21, mu=100, sigma=1,
ra=1.375,
dec=-1.2108,
......@@ -51,7 +52,8 @@ class TestWaveformGeneratorInstantiationWithoutOptionalParameters(unittest.TestC
class TestParameterSetter(unittest.TestCase):
def setUp(self):
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(source_model=gaussian_frequency_domain_strain)
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.simulation_parameters = dict(amplitude=1e-21, mu=100, sigma=1,
ra=1.375,
dec=-1.2108,
......@@ -89,7 +91,8 @@ class TestParameterSetter(unittest.TestCase):
class TestSourceModelSetter(unittest.TestCase):
def setUp(self):
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(source_model=gaussian_frequency_domain_strain)
self.waveform_generator = peyote.waveform_generator.WaveformGenerator(
frequency_domain_source_model=gaussian_frequency_domain_strain)
self.waveform_generator.source_model = gaussian_frequency_domain_strain_2
self.simulation_parameters = dict(a=1e-21, m=100, s=1,
ra=1.375,
......
......@@ -11,12 +11,12 @@ sampling_frequency = 4096.
injection_parameters = dict(
mass_1=36.,
mass_2=29.,
spin11=0,
spin12=0,
spin13=0,
spin21=0,
spin22=0,
spin23=0,
a_1=0,
a_2=0,
tilt_1=0,
tilt_2=0,
phi_1=0,
phi_2=0,
luminosity_distance=100.,
iota=0.4,
phase=1.3,
......@@ -32,7 +32,7 @@ injection_parameters = dict(
waveform_generator = peyote.waveform_generator.WaveformGenerator(
sampling_frequency=sampling_frequency,
time_duration=time_duration,
source_model=peyote.source.lal_binary_black_hole,
frequency_domain_source_model=peyote.source.lal_binary_black_hole,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
......
from __future__ import division
import matplotlib
matplotlib.use('AGG')
import peyote
import numpy as np
peyote.utils.setup_logger()
......@@ -12,7 +15,7 @@ L1, sampling_frequency, time_duration = peyote.detector.get_inteferometer('L1',
IFOs = [H1, L1]
maximum_posterior_estimates = dict(
spin11=0, spin12=0, spin13=0, spin21=0, spin22=0, spin23=0,
a_1=0, a_2=0, tilt_1=0, tilt_2=0, phi_1=0, phi_2=0,
luminosity_distance=410., iota=2.97305, phase=1.145,
waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375,
dec=-1.2108, geocent_time=time_of_event, psi=2.659, mass_1=36, mass_2=29)
......@@ -21,8 +24,8 @@ maximum_posterior_estimates = dict(
prior = peyote.prior.parse_floats_to_fixed_priors(maximum_posterior_estimates)
prior['ra'] = peyote.prior.create_default_prior(name='ra')
prior['dec'] = peyote.prior.create_default_prior(name='dec')
prior['psi'] = peyote.prior.create_default_prior(name='psi')
prior['phase'] = peyote.prior.create_default_prior(name='phase')
prior['psi'] = peyote.prior.Uniform(0, np.pi/2, 'psi')
prior['phase'] = peyote.prior.Uniform(0, np.pi/2, 'phase')
prior['iota'] = peyote.prior.create_default_prior(name='iota')
prior['mass_1'] = peyote.prior.Uniform(10, 80, 'mass_1')
prior['mass_2'] = peyote.prior.Uniform(10, 80, 'mass_2')
......@@ -42,7 +45,6 @@ likelihood = peyote.likelihood.Likelihood(IFOs, waveformgenerator)
# Run the sampler
result, sampler = peyote.sampler.run_sampler(
likelihood, prior, label='GW150914', sampler='pymultinest',
n_live_points=512, verbose=True, resume=False, outdir=outdir,
use_ratio=True)
npoints=1024, resume=False, outdir=outdir, use_ratio=True)
truth = [maximum_posterior_estimates[x] for x in result.search_parameter_keys]
sampler.plot_corner(truth=truth)
......@@ -73,7 +73,7 @@ injection_parameters = dict(amplitude=1e-21,
sampling_parameters = peyote.prior.parse_floats_to_fixed_priors(injection_parameters)
wg = peyote.waveform_generator.WaveformGenerator(
source_model=gaussian_frequency_domain_strain,
frequency_domain_source_model=gaussian_frequency_domain_strain,
parameters=injection_parameters
)
......
......@@ -15,12 +15,12 @@ sampling_frequency = 4096.
simulation_parameters = dict(
mass_1=36.,
mass_2=29.,
spin11=0,
spin12=0,
spin13=0,
spin21=0,
spin22=0,
spin23=0,
a_1=0,
a_2=0,
tilt_1=0,
tilt_2=0,
phi_1=0,
phi_2=0,
luminosity_distance=100.,
iota=0.4,
phase=1.3,
......@@ -32,7 +32,7 @@ simulation_parameters = dict(
psi=2.659
)
#sampling_parameters = peyote.parameter.Parameter.parse_floats_to_parameters(simulation_parameters)
waveform_generator = WaveformGenerator(source_model=peyote.source.lal_binary_black_hole,
waveform_generator = WaveformGenerator(frequency_domain_source_model=peyote.source.lal_binary_black_hole,
sampling_frequency=sampling_frequency,
time_duration=time_duration,
parameters=simulation_parameters)
......
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment