"reference_frequency=50., # gravitational waveform reference frequency (Hz)\n",
...
...
@@ -215,7 +215,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
"version": "3.7.6"
}
},
"nbformat": 4,
...
...
%% Cell type:markdown id: tags:
# Compare samplers
In this notebook, we'll compare the different samplers implemented in `bilby`. As of this version, we don't compare the outputs, only how to run them and the timings for their default setup.
## Setup
%% Cell type:code id: tags:
``` python
importnumpyasnp
importpylabasplt
%load_extautoreload
%autoreload2
importbilby
bilby.utils.setup_logger()
time_duration=1.# set the signal duration (seconds)
sampling_frequency=4096.# set the data sampling frequency (Hz)
injection_parameters=dict(
mass_1=36.,# detector frame (redshifted) primary mass (solar masses)
mass_2=29.,# detector frame (redshifted) secondary mass (solar masses)
a_1=0,# primary dimensionless spin magnitude
a_2=0,# secondary dimensionless spin magnitude
tilt_1=0,# polar angle between primary spin and the orbital angular momentum (radians)
tilt_2=0,# polar angle between secondary spin and the orbital angular momentum
phi_12=0,# azimuthal angle between primary and secondary spin (radians)
phi_jl=0,# azimuthal angle between total angular momentum and orbital angular momentum (radians)
luminosity_distance=100.,# luminosity distance to source (Mpc)
theta_jn=0.4,# inclination angle between line of sight and orbital angular momentum (radians)
theta_jn=0.4,# angle between the total angular momentum (both spin and orbital) and the line of sight
phase=1.3,# phase (radians)
waveform_approximant='IMRPhenomPv2',# waveform approximant name
reference_frequency=50.,# gravitational waveform reference frequency (Hz)
ra=1.375,# source right ascension (radians)
dec=-1.2108,# source declination (radians)
geocent_time=1126259642.413,# reference time at geocentre (time of coalescence or peak amplitude) (GPS seconds)
See [the dynesty docs](http://dynesty.readthedocs.io/en/latest/dynamic.html#). Essentially, this methods improves the posterior estimation over that of standard nested sampling.