Skip to content
Snippets Groups Projects
Commit 6ce06fab authored by moritz's avatar moritz
Browse files

Merge remote-tracking branch 'origin/master'

parents 49179ea1 6e3eea43
No related branches found
No related tags found
No related merge requests found
Pipeline #
......@@ -5,6 +5,8 @@ class Likelihood:
def __init__(self, interferometers, source):
self.interferometers = interferometers
self.source = source
self.noise_log_likelihood = 0
self.set_noise_log_likelihood()
def get_interferometer_signal(self, waveform_polarizations, interferometer):
h = []
......@@ -12,7 +14,6 @@ class Likelihood:
det_response = interferometer.antenna_response(
self.source.ra, self.source.dec,
self.source.geocent_time, self.source.psi, mode)
h.append(waveform_polarizations[mode] * det_response)
signal = np.sum(h, axis=0)
......@@ -38,6 +39,16 @@ class Likelihood:
/ interferometer.power_spectral_density_array)
return log_l.real
def log_likelihood_ratio(self):
return self.log_likelihood() - self.noise_log_likelihood
def set_noise_log_likelihood(self):
log_l = 0
for interferometer in self.interferometers:
log_l -= 4. / self.source.time_duration * np.sum(abs(interferometer.data)**2
/ interferometer.power_spectral_density_array)
self.noise_log_likelihood = log_l.real
class LikelihoodB(Likelihood):
......
......@@ -24,7 +24,11 @@ for IFO in IFOs:
IFO.inject_signal(source)
likelihood = peyote.likelihood.LikelihoodB(source=source, interferometers=IFOs)
likelihood = peyote.likelihood.Likelihood(source=source, interferometers=IFOs)
print(likelihood.noise_log_likelihood)
print(likelihood.log_likelihood())
print(likelihood.log_likelihood_ratio())
prior = source.copy()
prior.mass_1 = peyote.parameter.Parameter('mass_1', prior=peyote.prior.Uniform(lower=35, upper=37),
......@@ -32,8 +36,8 @@ prior.mass_1 = peyote.parameter.Parameter('mass_1', prior=peyote.prior.Uniform(l
prior.mass_2 = peyote.parameter.Parameter('mass_2', prior=peyote.prior.Uniform(lower=28, upper=30),
latex_label='$m_2$')
result = peyote.sampler.run_sampler(likelihood, prior, sampler='dynesty', npoints=100, print_progress=True)
# result = peyote.sampler.run_sampler(likelihood, prior, sampler='dynesty', npoints=100, print_progress=True)
truths = [source.__dict__[x] for x in result.search_parameter_keys]
fig = corner.corner(result.samples, labels=result.labels, truths=truths)
fig.savefig('Injection Test')
# truths = [source.__dict__[x] for x in result.search_parameter_keys]
# fig = corner.corner(result.samples, labels=result.labels, truths=truths)
# fig.savefig('Injection Test')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment