Skip to content
Snippets Groups Projects
Commit 72f7da3d authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Merge branch 'default_prior_bounds' into 'master'

Default prior bounds

See merge request Monash/tupak!34
parents 16041926 3c30410a
No related branches found
No related tags found
1 merge request!34Default prior bounds
Pipeline #
......@@ -10,11 +10,41 @@ import os
class Prior(object):
"""Prior class"""
"""
Prior class
Methods
-------
__init__:
Instantiate a prior object.
__call__:
Draw a single sample from the prior.
__repr__:
Print prior type and parameters.
sample(size=None):
Draw samples of size size from the prior.
rescale(val):
Rescale samples from a uniform distribution on [0, 1] to samples from the prior.
test_valid_for_recaling(val):
Test whether val is in [0, 1] and hence valid for rescaling.
def __init__(self, name=None, latex_label=None):
Parameters
----------
name: str
Name associated with prior.
latex_label: str
Latex label associated with prior, used for plotting.
minimum: float, optional
Minimum of the domain, default=-np.inf
maximum: float, optional
Maximum of the domain, default=np.inf
"""
def __init__(self, name=None, latex_label=None, minimum=-np.inf, maximum=np.inf):
self.name = name
self.latex_label = latex_label
self.minimum = minimum
self.maximum = maximum
def __call__(self):
return self.sample()
......@@ -93,9 +123,7 @@ class Uniform(Prior):
"""Uniform prior"""
def __init__(self, minimum, maximum, name=None, latex_label=None):
Prior.__init__(self, name, latex_label)
self.minimum = minimum
self.maximum = maximum
Prior.__init__(self, name, latex_label, minimum, maximum)
self.support = maximum - minimum
def rescale(self, val):
......@@ -104,7 +132,7 @@ class Uniform(Prior):
def prob(self, val):
"""Return the prior probability of val"""
if (self.minimum < val) and (val < self.maximum):
if (self.minimum < val) & (val < self.maximum):
return 1 / self.support
else:
return 0
......@@ -114,7 +142,7 @@ class DeltaFunction(Prior):
"""Dirac delta function prior, this always returns peak."""
def __init__(self, peak, name=None, latex_label=None):
Prior.__init__(self, name, latex_label)
Prior.__init__(self, name, latex_label, minimum=peak, maximum=peak)
self.peak = peak
def rescale(self, val):
......@@ -135,10 +163,8 @@ class PowerLaw(Prior):
def __init__(self, alpha, minimum, maximum, name=None, latex_label=None):
"""Power law with bounds and alpha, spectral index"""
Prior.__init__(self, name, latex_label)
Prior.__init__(self, name, latex_label, minimum, maximum)
self.alpha = alpha
self.minimum = minimum
self.maximum = maximum
def rescale(self, val):
"""
......@@ -167,8 +193,8 @@ class PowerLaw(Prior):
class Cosine(Prior):
def __init__(self, name=None, latex_label=None):
Prior.__init__(self, name, latex_label)
def __init__(self, name=None, latex_label=None, minimum=-np.pi / 2, maximum=np.pi / 2):
Prior.__init__(self, name, latex_label, minimum, maximum)
def rescale(self, val):
"""
......@@ -182,7 +208,7 @@ class Cosine(Prior):
@staticmethod
def prob(val):
"""Return the prior probability of val, defined over [-pi/2, pi/2]"""
if (val > -np.pi / 2) and (val < np.pi / 2):
if (val > np.minimum) and (val < np.maximum):
return np.cos(val) / 2
else:
return 0
......@@ -190,8 +216,8 @@ class Cosine(Prior):
class Sine(Prior):
def __init__(self, name=None, latex_label=None):
Prior.__init__(self, name, latex_label)
def __init__(self, name=None, latex_label=None, minimum=0, maximum=np.pi):
Prior.__init__(self, name, latex_label, minimum, maximum)
def rescale(self, val):
"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment