Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
766b81d9
Commit
766b81d9
authored
5 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Patches
Plain Diff
Fix flake8 issues
parent
83d32bdf
No related branches found
No related tags found
No related merge requests found
Pipeline
#91271
passed with warnings
5 years ago
Stage: test
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/gw/source.py
+48
-36
48 additions, 36 deletions
bilby/gw/source.py
with
48 additions
and
36 deletions
bilby/gw/source.py
+
48
−
36
View file @
766b81d9
...
@@ -63,18 +63,22 @@ def lal_binary_black_hole(
...
@@ -63,18 +63,22 @@ def lal_binary_black_hole(
pn_tidal_order
pn_tidal_order
pn_phase_order
pn_phase_order
pn_amplitude_order
pn_amplitude_order
mode_array: Activate a specific mode array and evaluate the model using those modes only.
mode_array:
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
Activate a specific mode array and evaluate the model using those
returns the 22 and 2-2 modes only of IMRPhenomHM.
modes only. e.g. waveform_arguments =
You can only specify modes that are included in that particular model.
dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2],[5,5],[5,-5]])
returns the 22 and 2-2 modes only of IMRPhenomHM. You can only
is not allowed because the 55 modes are not included in this model.
specify modes that are included in that particular model. e.g.
Be aware that some models only take positive modes and return the positive and the negative mode together,
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
while others need to call both.
modearray=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[4,-4]])
55 modes are not included in this model. Be aware that some models
returns the 22 and 2-2 of IMRPhenomHM.
only take positive modes and return the positive and the negative
However, waveform_arguments = dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
mode together, while others need to call both. e.g.
returns the 22 and 4-4 of IMRPhenomXHM.
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
modearray=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
However, waveform_arguments =
dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
returns the 22 and 4-4 of IMRPhenomXHM.
Returns
Returns
-------
-------
...
@@ -140,18 +144,22 @@ def lal_binary_neutron_star(
...
@@ -140,18 +144,22 @@ def lal_binary_neutron_star(
pn_tidal_order
pn_tidal_order
pn_phase_order
pn_phase_order
pn_amplitude_order
pn_amplitude_order
mode_array: Activate a specific mode array and evaluate the model using those modes only.
mode_array:
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
Activate a specific mode array and evaluate the model using those
returns the 22 and 2-2 modes only of IMRPhenomHM.
modes only. e.g. waveform_arguments =
You can only specify modes that are included in that particular model.
dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2],[5,5],[5,-5]])
returns the 22 and 2-2 modes only of IMRPhenomHM. You can only
is not allowed because the 55 modes are not included in this model.
specify modes that are included in that particular model. e.g.
Be aware that some models only take positive modes and return the positive and the negative mode together,
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
while others need to call both.
modearray=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[4,-4]])
55 modes are not included in this model. Be aware that some models
returns the 22 a
\n
d 2-2 of IMRPhenomHM.
only take positive modes and return the positive and the negative
However, waveform_arguments = dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
mode together, while others need to call both. e.g.
returns the 22 and 4-4 of IMRPhenomXHM.
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
modearray=[[2,2],[4,-4]]) returns the 22 a
\n
d 2-2 of IMRPhenomHM.
However, waveform_arguments =
dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
returns the 22 and 4-4 of IMRPhenomXHM.
Returns
Returns
-------
-------
...
@@ -202,18 +210,22 @@ def lal_eccentric_binary_black_hole_no_spins(
...
@@ -202,18 +210,22 @@ def lal_eccentric_binary_black_hole_no_spins(
pn_tidal_order
pn_tidal_order
pn_phase_order
pn_phase_order
pn_amplitude_order
pn_amplitude_order
mode_array: Activate a specific mode array and evaluate the model using those modes only.
mode_array:
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
Activate a specific mode array and evaluate the model using those
returns the 22 and 2-2 modes only of IMRPhenomHM.
modes only. e.g. waveform_arguments =
You can only specify modes that are included in that particular model.
dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2])
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[2,-2],[5,5],[5,-5]])
returns the 22 and 2-2 modes only of IMRPhenomHM. You can only
is not allowed because the 55 modes are not included in this model.
specify modes that are included in that particular model. e.g.
Be aware that some models only take positive modes and return the positive and the negative mode together,
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
while others need to call both.
modearray=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
e.g. waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
, modearray=[[2,2],[4,-4]])
55 modes are not included in this model. Be aware that some models
returns the 22 and 2-2 of IMRPhenomHM.
only take positive modes and return the positive and the negative
However, waveform_arguments = dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
mode together, while others need to call both. e.g.
returns the 22 and 4-4 of IMRPhenomXHM.
waveform_arguments = dict(waveform_approximant=
'
IMRPhenomHM
'
,
modearray=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
However, waveform_arguments =
dict(waveform_approximant=
'
IMRPhenomXHM
'
, modearray=[[2,2],[4,-4]])
returns the 22 and 4-4 of IMRPhenomXHM.
Returns
Returns
-------
-------
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment