Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
7ab25303
Commit
7ab25303
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
update calibration example
parent
b48e7e33
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!113
Add calibration
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/injection_examples/calibration_example.py
+44
-50
44 additions, 50 deletions
examples/injection_examples/calibration_example.py
with
44 additions
and
50 deletions
examples/injection_examples/calibration_example.py
+
44
−
50
View file @
7ab25303
#!/bin/python
"""
Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal.
This example estimates the masses using a uniform prior in both component masses and distance using a uniform in
comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7.
Tutorial to demonstrate running parameter estimation with calibration
uncertainties included.
"""
from
__future__
import
division
,
print_function
import
numpy
as
np
import
tupak
# Set the duration and sampling frequency of the data segment that we're going to inject the signal into
# Set the duration and sampling frequency of the data segment
# that we're going to create and inject the signal into.
duration
=
4.
sampling_frequency
=
2048.
...
...
@@ -24,68 +22,64 @@ tupak.core.utils.setup_logger(outdir=outdir, label=label)
# Set up a random seed for result reproducibility. This is optional!
np
.
random
.
seed
(
88170235
)
# We are going to inject a binary black hole waveform. We first establish a dictionary of parameters that
# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2),
# We are going to inject a binary black hole waveform. We first establish a
# dictionary of parameters that includes all of the different waveform
# parameters, including masses of the two black holes (mass_1, mass_2),
# spins of both black holes (a, tilt, phi), etc.
injection_parameters
=
dict
(
mass_1
=
36.
,
mass_2
=
29.
,
a_1
=
0.4
,
a_2
=
0.3
,
tilt_1
=
0.5
,
tilt_2
=
1.0
,
phi_12
=
1.7
,
phi_jl
=
0.3
,
luminosity_distance
=
2000.
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
ra
=
1.375
,
dec
=-
1.2108
)
injection_parameters
=
dict
(
mass_1
=
36.
,
mass_2
=
29.
,
a_1
=
0.4
,
a_2
=
0.3
,
tilt_1
=
0.5
,
tilt_2
=
1.0
,
phi_12
=
1.7
,
phi_jl
=
0.3
,
luminosity_distance
=
2000.
,
iota
=
0.4
,
psi
=
2.659
,
phase
=
1.3
,
geocent_time
=
1126259642.413
,
ra
=
1.375
,
dec
=-
1.2108
)
# Fixed arguments passed into the source model
waveform_arguments
=
dict
(
waveform_approximant
=
'
IMRPhenomPv2
'
,
reference_frequency
=
50.
)
# Create the waveform_generator using a LAL BinaryBlackHole source function
waveform_generator
=
tupak
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
tupak
.
gw
.
source
.
lal_binary_black_hole
,
parameters
=
injection_parameters
,
waveform_arguments
=
waveform_arguments
)
hf_signal
=
waveform_generator
.
frequency_domain_strain
()
# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
# and Virgo (V1)). These default to their design sensitivity
ifos
=
tupak
.
gw
.
detector
.
InterferometerSet
([
'
H1
'
,
'
L1
'
,
'
V1
'
])
waveform_generator
=
tupak
.
gw
.
WaveformGenerator
(
duration
=
duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
tupak
.
gw
.
source
.
lal_binary_black_hole
,
parameters
=
injection_parameters
,
waveform_arguments
=
waveform_arguments
)
# Set up interferometers. In this case we'll use three interferometers
# (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)).
# These default to their design sensitivity
ifos
=
tupak
.
gw
.
detector
.
InterferometerList
([
'
H1
'
,
'
L1
'
,
'
V1
'
])
for
ifo
in
ifos
:
injection_parameters
.
update
({
'
recalib_{}_amplitude_{}
'
.
format
(
ifo
.
name
,
ii
):
0.1
for
ii
in
range
(
5
)})
injection_parameters
.
update
({
'
recalib_{}_phase_{}
'
.
format
(
ifo
.
name
,
ii
):
0.01
for
ii
in
range
(
5
)})
injection_parameters
.
update
({
'
recalib_{}_amplitude_{}
'
.
format
(
ifo
.
name
,
ii
):
0.1
for
ii
in
range
(
5
)})
injection_parameters
.
update
({
'
recalib_{}_phase_{}
'
.
format
(
ifo
.
name
,
ii
):
0.01
for
ii
in
range
(
5
)})
ifo
.
calibration_model
=
tupak
.
gw
.
calibration
.
CubicSpline
(
prefix
=
'
recalib_{}_
'
.
format
(
ifo
.
name
),
minimum_frequency
=
ifo
.
minimum_frequency
,
prefix
=
'
recalib_{}_
'
.
format
(
ifo
.
name
),
minimum_frequency
=
ifo
.
minimum_frequency
,
maximum_frequency
=
ifo
.
maximum_frequency
,
n_points
=
5
)
ifos
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
)
ifos
.
inject_signal
(
parameters
=
injection_parameters
,
waveform_generator
=
waveform_generator
)
# IFOs = [tupak.gw.detector.get_interferometer_with_fake_noise_and_injection(
# name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, duration=duration,
# sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']]
ifos
.
set_strain_data_from_power_spectral_densities
(
sampling_frequency
=
sampling_frequency
,
duration
=
duration
)
ifos
.
inject_signal
(
parameters
=
injection_parameters
,
waveform_generator
=
waveform_generator
)
# Set up prior, which is a dictionary
# By default we will sample all terms in the signal models. However, this will take a long time for the calculation,
# so for this example we will set almost all of the priors to be equall to their injected values. This implies the
# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to
# not sample any parameter that has a delta-function prior.
# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters
# that will be included in the sampler. If we do nothing, then the default priors get used.
priors
=
tupak
.
gw
.
prior
.
BBHPriorSet
()
priors
[
'
geocent_time
'
]
=
tupak
.
core
.
prior
.
Uniform
(
minimum
=
injection_parameters
[
'
geocent_time
'
]
-
1
,
maximum
=
injection_parameters
[
'
geocent_time
'
]
+
1
,
name
=
'
geocent_time
'
,
latex_label
=
'
$t_c$
'
)
for
key
in
[
'
a_1
'
,
'
a_2
'
,
'
tilt_1
'
,
'
tilt_2
'
,
'
phi_12
'
,
'
phi_jl
'
,
'
psi
'
,
'
ra
'
,
'
dec
'
,
'
geocent_time
'
,
'
phase
'
,
'
iota
'
,
'
luminosity_distance
'
,
'
mass_1
'
,
'
mass_2
'
]:
priors
[
key
]
=
injection_parameters
[
key
]
# Here we fix the injected cbc parameters and most of the calibration parameters
# to the injected values.
# We allow a subset of the calibration parameters to vary.
priors
=
injection_parameters
.
copy
()
for
key
in
injection_parameters
:
if
'
recalib
'
in
key
:
priors
[
key
]
=
injection_parameters
[
key
]
for
name
in
[
'
recalib_H1_amplitude_0
'
,
'
recalib_H1_amplitude_1
'
,
'
recalib_H1_amplitude_2
'
]:
priors
[
name
]
=
tupak
.
prior
.
Gaussian
(
mu
=
0
,
sigma
=
0.2
,
name
=
name
,
latex_label
=
'
H1 $A_{}$
'
.
format
(
name
[
-
1
]))
for
name
in
[
'
recalib_H1_amplitude_0
'
,
'
recalib_H1_amplitude_1
'
]:
priors
[
name
]
=
tupak
.
prior
.
Gaussian
(
mu
=
0
,
sigma
=
0.2
,
name
=
name
,
latex_label
=
'
H1 $A_{}$
'
.
format
(
name
[
-
1
]))
# Initialise the likelihood by passing in the interferometer data (IFOs) and
the waveoform generator
likelihood
=
tupak
.
GravitationalWaveTransient
(
interferometers
=
ifos
,
waveform_generator
=
waveform_
generator
,
time_marginalization
=
False
,
phase_marginalization
=
False
,
distance_marginalization
=
False
,
prior
=
pri
or
s
)
# Initialise the likelihood by passing in the interferometer data (IFOs) and
# the waveform
generator
likelihood
=
tupak
.
gw
.
GravitationalWaveTransient
(
interferometers
=
ifos
,
waveform_generator
=
waveform_generat
or
)
# Run sampler. In this case we're going to use the `dynesty` sampler
result
=
tupak
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
npoints
=
1000
,
injection_parameters
=
injection_parameters
,
outdir
=
outdir
,
label
=
label
)
result
=
tupak
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
npoints
=
1000
,
injection_parameters
=
injection_parameters
,
outdir
=
outdir
,
label
=
label
)
# make some plots of the outputs
result
.
plot_corner
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment