Skip to content
Snippets Groups Projects
Commit 7b825a98 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Improves the documentation

- Add doc file on CBC PE
- Add introduction text
parent 1e71c112
No related branches found
No related tags found
No related merge requests found
......@@ -87,7 +87,6 @@ a likelihood and prior, and running nested sampling using `tupak`.
.. literalinclude:: /../examples/other_examples/linear_regression.py
:language: python
:emphasize-lines: 12,15-18
:linenos:
Running the script above will make a few images. Firstly, the plot of the data:
......
docs/images/H1_frequency_domain_data.png

35.9 KiB

docs/images/basic_tutorial_corner.png

395 KiB

......@@ -9,6 +9,7 @@ Welcome to tupak's documentation!
:caption: Contents:
basics-of-parameter-estimation
compact-binary-coalescence-parameter-estimation
tupak-output
likelihood
samplers
......
......@@ -47,12 +47,15 @@ priors = dict()
# so for this example we will set almost all of the priors to be equall to their injected values. This implies the
# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to
# not sample any parameter that has a delta-function prior.
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'psi', 'ra', 'dec', 'geocent_time']:
for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'psi', 'ra', 'dec', 'luminosity_distance', 'iota']:
priors[key] = injection_parameters[key]
# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters
# that will be included in the sampler. If we do nothing, then the default priors get used.
priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
#priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
priors['geocent_time'] = tupak.prior.Uniform(injection_parameters['geocent_time'] - 1,
injection_parameters['geocent_time'] + 1,
'geocent_time')
# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
likelihood = tupak.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator)
......
......@@ -4,7 +4,12 @@ tupak
Tupak is The User friendly Parameter estimAtion Kode
FILL IN THE REST
The aim of tupak is to provide user friendly interface to perform parameter
estimation. It is primarily designed and built for inference of compact
binary coalesence events in interferometric data, but it can also be used for
more general problems.
For installation instructions see https://git.ligo.org/Monash/tupak
"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment