Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
bilby
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
25
Issues
25
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
12
Merge Requests
12
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lscsoft
bilby
Commits
8497b955
Commit
8497b955
authored
May 13, 2020
by
Gregory Ashton
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into sampling-frame
parents
ff51dd02
775d682a
Pipeline
#126300
passed with stages
in 23 minutes and 29 seconds
Changes
8
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
226 additions
and
30 deletions
+226
-30
bilby/core/result.py
bilby/core/result.py
+140
-2
bilby/core/sampler/__init__.py
bilby/core/sampler/__init__.py
+8
-4
bilby/core/sampler/base_sampler.py
bilby/core/sampler/base_sampler.py
+1
-0
bilby/core/sampler/cpnest.py
bilby/core/sampler/cpnest.py
+5
-0
bilby/core/sampler/dynesty.py
bilby/core/sampler/dynesty.py
+4
-0
bilby/core/sampler/ptemcee.py
bilby/core/sampler/ptemcee.py
+4
-0
bilby/core/utils.py
bilby/core/utils.py
+20
-0
bilby/gw/conversion.py
bilby/gw/conversion.py
+44
-24
No files found.
bilby/core/result.py
View file @
8497b955
from
__future__
import
division
import
inspect
import
os
from
collections
import
OrderedDict
,
namedtuple
from
copy
import
copy
...
...
@@ -95,6 +96,140 @@ def read_in_result(filename=None, outdir=None, label=None, extension='json', gzi
return
result
def
get_weights_for_reweighting
(
result
,
new_likelihood
=
None
,
new_prior
=
None
,
old_likelihood
=
None
,
old_prior
=
None
):
""" Calculate the weights for reweight()
See bilby.core.result.reweight() for help with the inputs
Returns
-------
ln_weights: array
An array of the natural-log weights
new_log_likelihood_array: array
An array of the natural-log likelihoods
new_log_prior_array: array
An array of the natural-log priors
"""
nposterior
=
len
(
result
.
posterior
)
old_log_likelihood_array
=
np
.
zeros
(
nposterior
)
old_log_prior_array
=
np
.
zeros
(
nposterior
)
new_log_likelihood_array
=
np
.
zeros
(
nposterior
)
new_log_prior_array
=
np
.
zeros
(
nposterior
)
for
ii
,
sample
in
result
.
posterior
.
iterrows
():
# Convert sample to dictionary
par_sample
=
{
key
:
sample
[
key
]
for
key
in
result
.
search_parameter_keys
}
if
old_likelihood
is
not
None
:
old_likelihood
.
parameters
.
update
(
par_sample
)
old_log_likelihood_array
[
ii
]
=
old_likelihood
.
log_likelihood
()
else
:
old_log_likelihood_array
[
ii
]
=
sample
[
"log_likelihood"
]
if
new_likelihood
is
not
None
:
new_likelihood
.
parameters
.
update
(
par_sample
)
new_log_likelihood_array
[
ii
]
=
new_likelihood
.
log_likelihood
()
else
:
# Don't perform likelihood reweighting (i.e. likelihood isn't updated)
new_log_likelihood_array
[
ii
]
=
old_log_likelihood_array
[
ii
]
if
old_prior
is
not
None
:
old_log_prior_array
[
ii
]
=
old_prior
.
ln_prob
(
par_sample
)
else
:
old_log_prior_array
[
ii
]
=
sample
[
"log_prior"
]
if
new_prior
is
not
None
:
new_log_prior_array
[
ii
]
=
new_prior
.
ln_prob
(
par_sample
)
else
:
# Don't perform prior reweighting (i.e. prior isn't updated)
new_log_prior_array
[
ii
]
=
old_log_prior_array
[
ii
]
ln_weights
=
(
new_log_likelihood_array
+
new_log_prior_array
-
old_log_likelihood_array
-
old_log_prior_array
)
return
ln_weights
,
new_log_likelihood_array
,
new_log_prior_array
def
rejection_sample
(
posterior
,
weights
):
""" Perform rejection sampling on a posterior using weights
Parameters
----------
posterior: pd.DataFrame
The dataframe containing posterior samples
weights: np.ndarray
An array of weights
Returns
-------
reweighted_posterior: pd.DataFrame
The posterior resampled using rejection sampling
"""
keep
=
weights
>
np
.
random
.
uniform
(
0
,
max
(
weights
),
weights
.
shape
)
return
posterior
.
iloc
[
keep
]
def
reweight
(
result
,
label
=
None
,
new_likelihood
=
None
,
new_prior
=
None
,
old_likelihood
=
None
,
old_prior
=
None
):
""" Reweight a result to a new likelihood/prior using rejection sampling
Parameters
----------
label: str, optional
An updated label to apply to the result object
new_likelihood: bilby.core.likelood.Likelihood, (optional)
If given, the new likelihood to reweight too. If not given, likelihood
reweighting is not applied
new_prior: bilby.core.prior.PriorDict, (optional)
If given, the new prior to reweight too. If not given, prior
reweighting is not applied
old_likelihood: bilby.core.likelihood.Likelihood, (optional)
If given, calculate the old likelihoods from this object. If not given,
the values stored in the posterior are used.
old_prior: bilby.core.prior.PriorDict, (optional)
If given, calculate the old prior from this object. If not given,
the values stored in the posterior are used.
Returns
-------
result: bilby.core.result.Result
A copy of the result object with a reweighted posterior
"""
result
=
copy
(
result
)
nposterior
=
len
(
result
.
posterior
)
logger
.
info
(
"Reweighting posterior with {} samples"
.
format
(
nposterior
))
ln_weights
,
new_log_likelihood_array
,
new_log_prior_array
=
get_weights_for_reweighting
(
result
,
new_likelihood
=
new_likelihood
,
new_prior
=
new_prior
,
old_likelihood
=
old_likelihood
,
old_prior
=
old_prior
)
# Overwrite the likelihood and prior evaluations
result
.
posterior
[
"log_likelihood"
]
=
new_log_likelihood_array
result
.
posterior
[
"log_prior"
]
=
new_log_prior_array
weights
=
np
.
exp
(
ln_weights
)
result
.
posterior
=
rejection_sample
(
result
.
posterior
,
weights
=
weights
)
logger
.
info
(
"Rejection sampling resulted in {} samples"
.
format
(
len
(
result
.
posterior
)))
result
.
meta_data
[
"reweighted_using_rejection_sampling"
]
=
True
result
.
log_evidence
+=
logsumexp
(
ln_weights
)
-
np
.
log
(
nposterior
)
result
.
priors
=
new_prior
if
label
:
result
.
label
=
label
else
:
result
.
label
+=
"_reweighted"
return
result
class
Result
(
object
):
def
__init__
(
self
,
label
=
'no_label'
,
outdir
=
'.'
,
sampler
=
None
,
search_parameter_keys
=
None
,
fixed_parameter_keys
=
None
,
...
...
@@ -1092,7 +1227,7 @@ class Result(object):
return
posterior
def
samples_to_posterior
(
self
,
likelihood
=
None
,
priors
=
None
,
conversion_function
=
None
):
conversion_function
=
None
,
npool
=
1
):
"""
Convert array of samples to posterior (a Pandas data frame)
...
...
@@ -1123,7 +1258,10 @@ class Result(object):
else
:
data_frame
[
'log_prior'
]
=
self
.
log_prior_evaluations
if
conversion_function
is
not
None
:
data_frame
=
conversion_function
(
data_frame
,
likelihood
,
priors
)
if
"npool"
in
inspect
.
getargspec
(
conversion_function
).
args
:
data_frame
=
conversion_function
(
data_frame
,
likelihood
,
priors
,
npool
=
npool
)
else
:
data_frame
=
conversion_function
(
data_frame
,
likelihood
,
priors
)
self
.
posterior
=
data_frame
def
calculate_prior_values
(
self
,
priors
):
...
...
bilby/core/sampler/__init__.py
View file @
8497b955
...
...
@@ -50,7 +50,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
sampler
=
'dynesty'
,
use_ratio
=
None
,
injection_parameters
=
None
,
conversion_function
=
None
,
plot
=
False
,
default_priors_file
=
None
,
clean
=
None
,
meta_data
=
None
,
save
=
True
,
gzip
=
False
,
result_class
=
None
,
**
kwargs
):
result_class
=
None
,
npool
=
1
,
**
kwargs
):
"""
The primary interface to easy parameter estimation
...
...
@@ -99,6 +99,9 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
The result class to use. By default, `bilby.core.result.Result` is used,
but objects which inherit from this class can be given providing
additional methods.
npool: int
An integer specifying the available CPUs to create pool objects for
parallelization.
**kwargs:
All kwargs are passed directly to the samplers `run` function
...
...
@@ -151,7 +154,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
likelihood
,
priors
=
priors
,
outdir
=
outdir
,
label
=
label
,
injection_parameters
=
injection_parameters
,
meta_data
=
meta_data
,
use_ratio
=
use_ratio
,
plot
=
plot
,
result_class
=
result_class
,
**
kwargs
)
npool
=
npool
,
**
kwargs
)
else
:
print
(
IMPLEMENTED_SAMPLERS
)
raise
ValueError
(
...
...
@@ -161,7 +164,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
likelihood
,
priors
=
priors
,
outdir
=
outdir
,
label
=
label
,
use_ratio
=
use_ratio
,
plot
=
plot
,
injection_parameters
=
injection_parameters
,
meta_data
=
meta_data
,
**
kwargs
)
npool
=
npool
,
**
kwargs
)
else
:
raise
ValueError
(
"Provided sampler should be a Sampler object or name of a known "
...
...
@@ -204,7 +207,8 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
result
.
injection_parameters
)
result
.
samples_to_posterior
(
likelihood
=
likelihood
,
priors
=
result
.
priors
,
conversion_function
=
conversion_function
)
conversion_function
=
conversion_function
,
npool
=
npool
)
if
save
:
# The overwrite here ensures we overwrite the initially stored data
...
...
bilby/core/sampler/base_sampler.py
View file @
8497b955
...
...
@@ -88,6 +88,7 @@ class Sampler(object):
"""
default_kwargs
=
dict
()
npool_equiv_kwargs
=
[
'queue_size'
,
'threads'
,
'nthreads'
,
'npool'
]
def
__init__
(
self
,
likelihood
,
priors
,
outdir
=
'outdir'
,
label
=
'label'
,
...
...
bilby/core/sampler/cpnest.py
View file @
8497b955
...
...
@@ -47,6 +47,11 @@ class Cpnest(NestedSampler):
for
equiv
in
self
.
npoints_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'nlive'
]
=
kwargs
.
pop
(
equiv
)
if
'nthreads'
not
in
kwargs
:
for
equiv
in
self
.
npool_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'nthreads'
]
=
kwargs
.
pop
(
equiv
)
if
'seed'
not
in
kwargs
:
logger
.
warning
(
'No seed provided, cpnest will use 1234.'
)
...
...
bilby/core/sampler/dynesty.py
View file @
8497b955
...
...
@@ -208,6 +208,10 @@ class Dynesty(NestedSampler):
for
equiv
in
self
.
walks_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'walks'
]
=
kwargs
.
pop
(
equiv
)
if
"queue_size"
not
in
kwargs
:
for
equiv
in
self
.
npool_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
'queue_size'
]
=
kwargs
.
pop
(
equiv
)
def
_verify_kwargs_against_default_kwargs
(
self
):
if
not
self
.
kwargs
[
'walks'
]:
...
...
bilby/core/sampler/ptemcee.py
View file @
8497b955
...
...
@@ -221,6 +221,10 @@ class Ptemcee(MCMCSampler):
for
equiv
in
self
.
nwalkers_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
"nwalkers"
]
=
kwargs
.
pop
(
equiv
)
if
"threads"
not
in
kwargs
:
for
equiv
in
self
.
npool_equiv_kwargs
:
if
equiv
in
kwargs
:
kwargs
[
"threads"
]
=
kwargs
.
pop
(
equiv
)
def
get_pos0_from_prior
(
self
):
""" Draw the initial positions from the prior
...
...
bilby/core/utils.py
View file @
8497b955
...
...
@@ -1214,6 +1214,26 @@ def safe_save_figure(fig, filename, **kwargs):
fig
.
savefig
(
fname
=
filename
,
**
kwargs
)
def
kish_log_effective_sample_size
(
ln_weights
):
""" Calculate the Kish effective sample size from the natural-log weights
See https://en.wikipedia.org/wiki/Effective_sample_size for details
Parameters
----------
ln_weights: array
An array of the ln-weights
Returns
-------
ln_n_eff:
The natural-log of the effective sample size
"""
log_n_eff
=
2
*
logsumexp
(
ln_weights
)
-
logsumexp
(
2
*
ln_weights
)
return
log_n_eff
class
IllegalDurationAndSamplingFrequencyException
(
Exception
):
pass
...
...
bilby/gw/conversion.py
View file @
8497b955
from
__future__
import
division
import
sys
import
multiprocessing
from
tqdm
import
tqdm
import
numpy
as
np
...
...
@@ -747,7 +748,7 @@ def lambda_tilde_to_lambda_1_lambda_2(
def
_generate_all_cbc_parameters
(
sample
,
defaults
,
base_conversion
,
likelihood
=
None
,
priors
=
None
):
likelihood
=
None
,
priors
=
None
,
npool
=
1
):
"""Generate all cbc parameters, helper function for BBH/BNS"""
output_sample
=
sample
.
copy
()
waveform_defaults
=
defaults
...
...
@@ -770,7 +771,7 @@ def _generate_all_cbc_parameters(sample, defaults, base_conversion,
):
try
:
generate_posterior_samples_from_marginalized_likelihood
(
samples
=
output_sample
,
likelihood
=
likelihood
)
samples
=
output_sample
,
likelihood
=
likelihood
,
npool
=
npool
)
except
MarginalizedLikelihoodReconstructionError
as
e
:
logger
.
warning
(
"Marginalised parameter reconstruction failed with message "
...
...
@@ -811,7 +812,7 @@ def _generate_all_cbc_parameters(sample, defaults, base_conversion,
return
output_sample
def
generate_all_bbh_parameters
(
sample
,
likelihood
=
None
,
priors
=
None
):
def
generate_all_bbh_parameters
(
sample
,
likelihood
=
None
,
priors
=
None
,
npool
=
1
):
"""
From either a single sample or a set of samples fill in all missing
BBH parameters, in place.
...
...
@@ -833,11 +834,11 @@ def generate_all_bbh_parameters(sample, likelihood=None, priors=None):
output_sample
=
_generate_all_cbc_parameters
(
sample
,
defaults
=
waveform_defaults
,
base_conversion
=
convert_to_lal_binary_black_hole_parameters
,
likelihood
=
likelihood
,
priors
=
priors
)
likelihood
=
likelihood
,
priors
=
priors
,
npool
=
npool
)
return
output_sample
def
generate_all_bns_parameters
(
sample
,
likelihood
=
None
,
priors
=
None
):
def
generate_all_bns_parameters
(
sample
,
likelihood
=
None
,
priors
=
None
,
npool
=
1
):
"""
From either a single sample or a set of samples fill in all missing
BNS parameters, in place.
...
...
@@ -855,6 +856,9 @@ def generate_all_bns_parameters(sample, likelihood=None, priors=None):
likelihood.interferometers.
priors: dict, optional
Dictionary of prior objects, used to fill in non-sampled parameters.
npool: int, (default=1)
If given, perform generation (where possible) using a multiprocessing pool
"""
waveform_defaults
=
{
'reference_frequency'
:
50.0
,
'waveform_approximant'
:
'TaylorF2'
,
...
...
@@ -862,7 +866,7 @@ def generate_all_bns_parameters(sample, likelihood=None, priors=None):
output_sample
=
_generate_all_cbc_parameters
(
sample
,
defaults
=
waveform_defaults
,
base_conversion
=
convert_to_lal_binary_neutron_star_parameters
,
likelihood
=
likelihood
,
priors
=
priors
)
likelihood
=
likelihood
,
priors
=
priors
,
npool
=
npool
)
try
:
output_sample
=
generate_tidal_parameters
(
output_sample
)
except
KeyError
as
e
:
...
...
@@ -1151,7 +1155,7 @@ def compute_snrs(sample, likelihood):
def
generate_posterior_samples_from_marginalized_likelihood
(
samples
,
likelihood
):
samples
,
likelihood
,
npool
=
1
):
"""
Reconstruct the distance posterior from a run which used a likelihood which
explicitly marginalised over time/distance/phase.
...
...
@@ -1164,6 +1168,8 @@ def generate_posterior_samples_from_marginalized_likelihood(
Posterior from run with a marginalised likelihood.
likelihood: bilby.gw.likelihood.GravitationalWaveTransient
Likelihood used during sampling.
npool: int, (default=1)
If given, perform generation (where possible) using a multiprocessing pool
Return
------
...
...
@@ -1174,24 +1180,30 @@ def generate_posterior_samples_from_marginalized_likelihood(
likelihood
.
distance_marginalization
,
likelihood
.
time_marginalization
]):
return
samples
else
:
logger
.
info
(
'Reconstructing marginalised parameters.'
)
# pass through a dictionary
if
isinstance
(
samples
,
dict
):
pass
elif
isinstance
(
samples
,
DataFrame
):
new_time_samples
=
list
()
new_distance_samples
=
list
()
new_phase_samples
=
list
()
for
ii
in
tqdm
(
range
(
len
(
samples
)),
file
=
sys
.
stdout
):
sample
=
dict
(
samples
.
iloc
[
ii
]).
copy
()
likelihood
.
parameters
.
update
(
sample
)
new_sample
=
likelihood
.
generate_posterior_sample_from_marginalized_likelihood
()
new_time_samples
.
append
(
new_sample
[
'geocent_time'
])
new_distance_samples
.
append
(
new_sample
[
'luminosity_distance'
])
new_phase_samples
.
append
(
new_sample
[
'phase'
])
samples
[
'geocent_time'
]
=
new_time_samples
samples
[
'luminosity_distance'
]
=
new_distance_samples
samples
[
'phase'
]
=
new_phase_samples
return
samples
elif
not
isinstance
(
samples
,
DataFrame
):
raise
ValueError
(
"Unable to handle input samples of type {}"
.
format
(
type
(
samples
)))
logger
.
info
(
'Reconstructing marginalised parameters.'
)
fill_args
=
[(
ii
,
row
,
likelihood
)
for
ii
,
row
in
samples
.
iterrows
()]
if
npool
>
1
:
pool
=
multiprocessing
.
Pool
(
processes
=
npool
)
logger
.
info
(
"Using a pool with size {} for nsamples={}"
.
format
(
npool
,
len
(
samples
))
)
new_samples
=
np
.
array
(
pool
.
map
(
fill_sample
,
tqdm
(
fill_args
,
file
=
sys
.
stdout
)))
pool
.
close
()
else
:
new_samples
=
np
.
array
([
fill_sample
(
xx
)
for
xx
in
tqdm
(
fill_args
,
file
=
sys
.
stdout
)])
samples
[
'geocent_time'
]
=
new_samples
[:,
0
]
samples
[
'luminosity_distance'
]
=
new_samples
[:,
1
]
samples
[
'phase'
]
=
new_samples
[:,
2
]
return
samples
...
...
@@ -1212,3 +1224,11 @@ def generate_sky_frame_parameters(samples, likelihood):
new_samples
=
DataFrame
(
new_samples
)
for
key
in
new_samples
:
samples
[
key
]
=
new_samples
[
key
]
def
fill_sample
(
args
):
ii
,
sample
,
likelihood
=
args
sample
=
dict
(
sample
).
copy
()
likelihood
.
parameters
.
update
(
dict
(
sample
).
copy
())
new_sample
=
likelihood
.
generate_posterior_sample_from_marginalized_likelihood
()
return
new_sample
[
"geocent_time"
],
new_sample
[
"luminosity_distance"
],
new_sample
[
"phase"
]
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment