Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
8a9a0dec
There was a problem fetching the pipeline summary.
Commit
8a9a0dec
authored
6 years ago
by
Jade Powell
Browse files
Options
Downloads
Patches
Plain Diff
tidy up supernova example
parent
25a152be
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!52
Burst
Pipeline
#
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
examples/supernova_example/supernova_example.py
+96
-0
96 additions, 0 deletions
examples/supernova_example/supernova_example.py
tupak/prior.py
+6
-1
6 additions, 1 deletion
tupak/prior.py
tupak/source.py
+10
-16
10 additions, 16 deletions
tupak/source.py
with
112 additions
and
17 deletions
examples/supernova_example/supernova_example.py
0 → 100644
+
96
−
0
View file @
8a9a0dec
#!/bin/python
"""
Tutorial to demonstrate running parameter estimation/model selection on an NR supernova injected signal.
Signal model is made by applying PCA to a set of supernova waveforms. The first few PCs are then linearly
combined with a scale factor. (See https://arxiv.org/pdf/1202.3256.pdf)
"""
from
__future__
import
division
,
print_function
import
tupak
import
numpy
as
np
# Set the duration and sampling frequency of the data segment that we're going to inject the signal into
time_duration
=
3.
sampling_frequency
=
4096.
# Specify the output directory and the name of the simulation.
outdir
=
'
outdir
'
label
=
'
supernova
'
tupak
.
utils
.
setup_logger
(
outdir
=
outdir
,
label
=
label
)
# Set up a random seed for result reproducibility. This is optional!
np
.
random
.
seed
(
170801
)
# We are going to inject a supernova waveform. We first establish a dictionary of parameters that
# includes all of the different waveform parameters. It will read in a signal to inject from a txt file.
injection_parameters
=
dict
(
file_path
=
'
MuellerL15_example_inj.txt
'
,
luminosity_distance
=
60.0
,
ra
=
1.375
,
dec
=
-
1.2108
,
geocent_time
=
1126259642.413
,
psi
=
2.659
)
# Create the waveform_generator using a supernova source function
waveform_generator
=
tupak
.
waveform_generator
.
WaveformGenerator
(
time_duration
=
time_duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
tupak
.
source
.
supernova
,
parameters
=
injection_parameters
)
hf_signal
=
waveform_generator
.
frequency_domain_strain
()
# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
# and Virgo (V1)). These default to their design sensitivity
IFOs
=
[
tupak
.
detector
.
get_interferometer_with_fake_noise_and_injection
(
name
,
injection_polarizations
=
hf_signal
,
injection_parameters
=
injection_parameters
,
time_duration
=
time_duration
,
sampling_frequency
=
sampling_frequency
,
outdir
=
outdir
)
for
name
in
[
'
H1
'
,
'
L1
'
,
'
V1
'
]]
# read in from a file the PCs used to create the signal model.
realPCs
=
np
.
loadtxt
(
'
SupernovaRealPCs.txt
'
)
imagPCs
=
np
.
loadtxt
(
'
SupernovaImagPCs.txt
'
)
# now we have to do the waveform_generator again because the signal model is not the same as the injection in this case.
simulation_parameters
=
dict
(
realPCs
=
realPCs
,
imagPCs
=
imagPCs
,
coeff1
=
0.1
,
coeff2
=
0.1
,
coeff3
=
0.1
,
coeff4
=
0.1
,
coeff5
=
0.1
,
luminosity_distance
=
60.0
,
ra
=
1.375
,
dec
=
-
1.2108
,
geocent_time
=
1126259642.413
,
psi
=
2.659
)
waveform_generator
=
tupak
.
waveform_generator
.
WaveformGenerator
(
time_duration
=
time_duration
,
sampling_frequency
=
sampling_frequency
,
frequency_domain_source_model
=
tupak
.
source
.
supernova_pca_model
,
parameters
=
simulation_parameters
)
# Set up prior, which is a dictionary
priors
=
dict
()
# By default we will sample all terms in the signal models. However, this will take a long time for the calculation,
# so for this example we will set almost all of the priors to be equall to their injected values. This implies the
# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to
# not sample any parameter that has a delta-function prior.
for
key
in
[
'
psi
'
,
'
geocent_time
'
]:
priors
[
key
]
=
injection_parameters
[
key
]
# The above list does *not* include frequency and Q, which means those are the parameters
# that will be included in the sampler. If we do nothing, then the default priors get used.
priors
[
'
luminosity_distance
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
luminosity_distance
'
)
priors
[
'
coeff1
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
coeff1
'
)
priors
[
'
coeff2
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
coeff2
'
)
priors
[
'
coeff3
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
coeff3
'
)
priors
[
'
coeff4
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
coeff4
'
)
priors
[
'
coeff5
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
coeff5
'
)
priors
[
'
ra
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
ra
'
)
priors
[
'
dec
'
]
=
tupak
.
prior
.
create_default_prior
(
name
=
'
dec
'
)
# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
likelihood
=
tupak
.
likelihood
.
GravitationalWaveTransient
(
interferometers
=
IFOs
,
waveform_generator
=
waveform_generator
)
# Run sampler. In this case we're going to use the `dynesty` sampler
result
=
tupak
.
sampler
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
npoints
=
1000
,
injection_parameters
=
injection_parameters
,
outdir
=
outdir
,
label
=
label
)
# make some plots of the outputs
#result.plot_corner()
print
(
result
)
This diff is collapsed.
Click to expand it.
tupak/prior.py
+
6
−
1
View file @
8a9a0dec
...
...
@@ -441,7 +441,12 @@ def create_default_prior(name):
'
phase
'
:
Uniform
(
name
=
name
,
minimum
=
0
,
maximum
=
2
*
np
.
pi
),
'
hrss
'
:
Uniform
(
name
=
name
,
minimum
=
1e-23
,
maximum
=
1e-21
),
'
Q
'
:
Uniform
(
name
=
name
,
minimum
=
2.0
,
maximum
=
50.0
),
'
frequency
'
:
Uniform
(
name
=
name
,
minimum
=
30.0
,
maximum
=
2000.0
)
'
frequency
'
:
Uniform
(
name
=
name
,
minimum
=
30.0
,
maximum
=
2000.0
),
'
coeff1
'
:
Uniform
(
name
=
name
,
minimum
=-
1.0
,
maximum
=
1.0
),
'
coeff2
'
:
Uniform
(
name
=
name
,
minimum
=-
1.0
,
maximum
=
1.0
),
'
coeff3
'
:
Uniform
(
name
=
name
,
minimum
=-
1.0
,
maximum
=
1.0
),
'
coeff4
'
:
Uniform
(
name
=
name
,
minimum
=-
1.0
,
maximum
=
1.0
),
'
coeff5
'
:
Uniform
(
name
=
name
,
minimum
=-
1.0
,
maximum
=
1.0
)
}
if
name
in
default_priors
.
keys
():
prior
=
default_priors
[
name
]
...
...
This diff is collapsed.
Click to expand it.
tupak/source.py
+
10
−
16
View file @
8a9a0dec
...
...
@@ -53,7 +53,6 @@ def lal_binary_black_hole(
def
sinegaussian
(
frequency_array
,
hrss
,
Q
,
frequency
,
ra
,
dec
,
geocent_time
,
psi
):
pi
=
3.14159
tau
=
Q
/
(
np
.
sqrt
(
2.0
)
*
np
.
pi
*
frequency
)
temp
=
Q
/
(
4.0
*
np
.
sqrt
(
np
.
pi
)
*
frequency
)
t
=
geocent_time
...
...
@@ -62,35 +61,30 @@ def sinegaussian(frequency_array, hrss, Q, frequency, ra, dec, geocent_time, psi
h_plus
=
(
hrss
/
np
.
sqrt
(
temp
*
(
1
+
np
.
exp
(
-
Q
**
2
))))
*
((
np
.
sqrt
(
np
.
pi
)
*
tau
)
/
2.0
)
*
(
np
.
exp
(
-
fm
**
2
*
np
.
pi
**
2
*
tau
**
2
)
+
np
.
exp
(
-
fp
**
2
*
pi
**
2
*
tau
**
2
))
h_cross
=
-
1j
*
(
hrss
/
np
.
sqrt
(
temp
*
(
1
-
np
.
exp
(
-
Q
**
2
))))
*
((
np
.
sqrt
(
pi
)
*
tau
)
/
2.0
)
*
(
np
.
exp
(
-
fm
**
2
*
pi
**
2
*
tau
**
2
)
-
np
.
exp
(
-
fp
**
2
*
pi
**
2
*
tau
**
2
))
h_cross
=
-
1j
*
(
hrss
/
np
.
sqrt
(
temp
*
(
1
-
np
.
exp
(
-
Q
**
2
))))
*
((
np
.
sqrt
(
np
.
pi
)
*
tau
)
/
2.0
)
*
(
np
.
exp
(
-
fm
**
2
*
np
.
pi
**
2
*
tau
**
2
)
-
np
.
exp
(
-
fp
**
2
*
np
.
pi
**
2
*
tau
**
2
))
return
{
'
plus
'
:
h_plus
,
'
cross
'
:
h_cross
}
def
supernova
(
frequency_array
,
file_path
,
luminosity_distance
,
ra
,
dec
,
geocent_time
,
psi
):
def
supernova
(
frequency_array
,
realPCs
,
imagPCs
,
file_path
,
luminosity_distance
,
ra
,
dec
,
geocent_time
,
psi
):
"""
A supernova NR simulation for injections
"""
# realhplus, imaghplus = np.loadtxt(file_path , usecols = (0,1), unpack=True)
realhplus
,
imaghplus
,
realhcross
,
imaghcross
=
np
.
loadtxt
(
'
MuellerL15_example_inj.txt
'
,
usecols
=
(
0
,
1
,
2
,
3
),
unpack
=
True
)
realhplus
,
imaghplus
,
realhcross
,
imaghcross
=
np
.
loadtxt
(
file_path
,
usecols
=
(
0
,
1
,
2
,
3
),
unpack
=
True
)
# waveform in file at 10kpc
scaling
=
10.0
/
luminosity_distance
scaling
=
1e-2
*
(
10.0
/
luminosity_distance
)
h_plus
=
scaling
*
(
realhplus
+
1.0j
*
imaghplus
)
h_cross
=
scaling
*
(
realhcross
+
1.0j
*
imaghcross
)
return
{
'
plus
'
:
h_plus
,
'
cross
'
:
h_cross
}
def
supernova_pca_model
(
frequency_array
,
coeff1
,
coeff2
,
coeff3
,
coeff4
,
coeff5
,
luminosity_distance
,
ra
,
dec
,
geocent_time
,
psi
):
def
supernova_pca_model
(
frequency_array
,
realPCs
,
imagPCs
,
coeff1
,
coeff2
,
coeff3
,
coeff4
,
coeff5
,
luminosity_distance
,
ra
,
dec
,
geocent_time
,
psi
):
"""
Supernova signal model
"""
# this is slow reading in the file every time
realpc1
,
realpc2
,
realpc3
,
realpc4
,
realpc5
=
np
.
loadtxt
(
'
SupernovaRealPCs.txt
'
,
usecols
=
(
0
,
1
,
2
,
3
,
4
),
unpack
=
True
)
imagpc1
,
imagpc2
,
imagpc3
,
imagpc4
,
imagpc5
=
np
.
loadtxt
(
'
SupernovaImagPCs.txt
'
,
usecols
=
(
0
,
1
,
2
,
3
,
4
),
unpack
=
True
)
pc1
=
realpc1
+
1.0j
*
imagpc1
pc2
=
realpc2
+
1.0j
*
imagpc2
pc3
=
realpc3
+
1.0j
*
imagpc3
pc4
=
realpc4
+
1.0j
*
imagpc4
pc5
=
realpc5
+
1.0j
*
imagpc5
pc1
=
realPCs
[:,
0
]
+
1.0j
*
imagPCs
[:,
0
]
pc2
=
realPCs
[:,
1
]
+
1.0j
*
imagPCs
[:,
1
]
pc3
=
realPCs
[:,
2
]
+
1.0j
*
imagPCs
[:,
2
]
pc4
=
realPCs
[:,
3
]
+
1.0j
*
imagPCs
[:,
3
]
pc5
=
realPCs
[:,
4
]
+
1.0j
*
imagPCs
[:,
5
]
# file at 10kpc
scaling
=
1e-22
*
(
10.0
/
luminosity_distance
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment