Skip to content
Snippets Groups Projects
Commit 8a9a0dec authored by Jade Powell's avatar Jade Powell
Browse files

tidy up supernova example

parent 25a152be
No related branches found
No related tags found
1 merge request!52Burst
Pipeline #
#!/bin/python
"""
Tutorial to demonstrate running parameter estimation/model selection on an NR supernova injected signal.
Signal model is made by applying PCA to a set of supernova waveforms. The first few PCs are then linearly
combined with a scale factor. (See https://arxiv.org/pdf/1202.3256.pdf)
"""
from __future__ import division, print_function
import tupak
import numpy as np
# Set the duration and sampling frequency of the data segment that we're going to inject the signal into
time_duration = 3.
sampling_frequency = 4096.
# Specify the output directory and the name of the simulation.
outdir = 'outdir'
label = 'supernova'
tupak.utils.setup_logger(outdir=outdir, label=label)
# Set up a random seed for result reproducibility. This is optional!
np.random.seed(170801)
# We are going to inject a supernova waveform. We first establish a dictionary of parameters that
# includes all of the different waveform parameters. It will read in a signal to inject from a txt file.
injection_parameters = dict(file_path = 'MuellerL15_example_inj.txt', luminosity_distance = 60.0, ra = 1.375,
dec = -1.2108, geocent_time = 1126259642.413, psi= 2.659)
# Create the waveform_generator using a supernova source function
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.supernova,
parameters=injection_parameters)
hf_signal = waveform_generator.frequency_domain_strain()
# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
# and Virgo (V1)). These default to their design sensitivity
IFOs = [tupak.detector.get_interferometer_with_fake_noise_and_injection(
name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, time_duration=time_duration,
sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1', 'V1']]
# read in from a file the PCs used to create the signal model.
realPCs = np.loadtxt('SupernovaRealPCs.txt')
imagPCs = np.loadtxt('SupernovaImagPCs.txt')
# now we have to do the waveform_generator again because the signal model is not the same as the injection in this case.
simulation_parameters = dict(realPCs=realPCs, imagPCs=imagPCs, coeff1 = 0.1, coeff2 = 0.1,
coeff3 = 0.1, coeff4 = 0.1, coeff5 = 0.1, luminosity_distance = 60.0,
ra = 1.375, dec = -1.2108, geocent_time = 1126259642.413, psi=2.659)
waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration,
sampling_frequency=sampling_frequency,
frequency_domain_source_model=tupak.source.supernova_pca_model,
parameters=simulation_parameters)
# Set up prior, which is a dictionary
priors = dict()
# By default we will sample all terms in the signal models. However, this will take a long time for the calculation,
# so for this example we will set almost all of the priors to be equall to their injected values. This implies the
# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to
# not sample any parameter that has a delta-function prior.
for key in ['psi', 'geocent_time']:
priors[key] = injection_parameters[key]
# The above list does *not* include frequency and Q, which means those are the parameters
# that will be included in the sampler. If we do nothing, then the default priors get used.
priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
priors['coeff1'] = tupak.prior.create_default_prior(name='coeff1')
priors['coeff2'] = tupak.prior.create_default_prior(name='coeff2')
priors['coeff3'] = tupak.prior.create_default_prior(name='coeff3')
priors['coeff4'] = tupak.prior.create_default_prior(name='coeff4')
priors['coeff5'] = tupak.prior.create_default_prior(name='coeff5')
priors['ra'] = tupak.prior.create_default_prior(name='ra')
priors['dec'] = tupak.prior.create_default_prior(name='dec')
# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator)
# Run sampler. In this case we're going to use the `dynesty` sampler
result = tupak.sampler.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000,
injection_parameters=injection_parameters, outdir=outdir, label=label)
# make some plots of the outputs
#result.plot_corner()
print(result)
......@@ -441,7 +441,12 @@ def create_default_prior(name):
'phase': Uniform(name=name, minimum=0, maximum=2 * np.pi),
'hrss': Uniform(name=name, minimum=1e-23, maximum=1e-21),
'Q': Uniform(name=name, minimum=2.0, maximum=50.0),
'frequency': Uniform(name=name, minimum=30.0, maximum=2000.0)
'frequency': Uniform(name=name, minimum=30.0, maximum=2000.0),
'coeff1': Uniform(name=name, minimum=-1.0, maximum=1.0),
'coeff2': Uniform(name=name, minimum=-1.0, maximum=1.0),
'coeff3': Uniform(name=name, minimum=-1.0, maximum=1.0),
'coeff4': Uniform(name=name, minimum=-1.0, maximum=1.0),
'coeff5': Uniform(name=name, minimum=-1.0, maximum=1.0)
}
if name in default_priors.keys():
prior = default_priors[name]
......
......@@ -53,7 +53,6 @@ def lal_binary_black_hole(
def sinegaussian(frequency_array, hrss, Q, frequency, ra, dec, geocent_time, psi):
pi = 3.14159
tau = Q / (np.sqrt(2.0)*np.pi*frequency)
temp = Q / (4.0*np.sqrt(np.pi)*frequency)
t = geocent_time
......@@ -62,35 +61,30 @@ def sinegaussian(frequency_array, hrss, Q, frequency, ra, dec, geocent_time, psi
h_plus = (hrss / np.sqrt(temp * (1+np.exp(-Q**2)))) * ((np.sqrt(np.pi)*tau)/2.0) * (np.exp(-fm**2 * np.pi**2 * tau**2) + np.exp(-fp**2 * pi**2 * tau**2))
h_cross = -1j*(hrss / np.sqrt(temp * (1-np.exp(-Q**2)))) * ((np.sqrt(pi)*tau)/2.0) * (np.exp(-fm**2 * pi**2 * tau**2) - np.exp(-fp**2 * pi**2 * tau**2))
h_cross = -1j*(hrss / np.sqrt(temp * (1-np.exp(-Q**2)))) * ((np.sqrt(np.pi)*tau)/2.0) * (np.exp(-fm**2 * np.pi**2 * tau**2) - np.exp(-fp**2 * np.pi**2 * tau**2))
return{'plus': h_plus, 'cross': h_cross}
def supernova(frequency_array, file_path, luminosity_distance, ra, dec, geocent_time, psi):
def supernova(frequency_array, realPCs, imagPCs, file_path, luminosity_distance, ra, dec, geocent_time, psi):
""" A supernova NR simulation for injections """
# realhplus, imaghplus = np.loadtxt(file_path , usecols = (0,1), unpack=True)
realhplus, imaghplus, realhcross, imaghcross = np.loadtxt('MuellerL15_example_inj.txt', usecols = (0,1,2,3), unpack=True)
realhplus, imaghplus, realhcross, imaghcross = np.loadtxt(file_path, usecols = (0,1,2,3), unpack=True)
# waveform in file at 10kpc
scaling = 10.0 / luminosity_distance
scaling = 1e-2 * (10.0 / luminosity_distance)
h_plus = scaling * (realhplus + 1.0j*imaghplus)
h_cross = scaling * (realhcross + 1.0j*imaghcross)
return {'plus': h_plus, 'cross': h_cross}
def supernova_pca_model(frequency_array, coeff1, coeff2, coeff3, coeff4, coeff5, luminosity_distance, ra, dec, geocent_time, psi):
def supernova_pca_model(frequency_array, realPCs, imagPCs, coeff1, coeff2, coeff3, coeff4, coeff5, luminosity_distance, ra, dec, geocent_time, psi):
""" Supernova signal model """
# this is slow reading in the file every time
realpc1, realpc2, realpc3, realpc4, realpc5 = np.loadtxt('SupernovaRealPCs.txt', usecols = (0,1,2,3,4), unpack=True)
imagpc1, imagpc2, imagpc3, imagpc4, imagpc5 = np.loadtxt('SupernovaImagPCs.txt', usecols = (0,1,2,3,4), unpack=True)
pc1 = realpc1 + 1.0j*imagpc1
pc2 = realpc2 + 1.0j*imagpc2
pc3 = realpc3 + 1.0j*imagpc3
pc4 = realpc4 + 1.0j*imagpc4
pc5 = realpc5 + 1.0j*imagpc5
pc1 = realPCs[:,0] + 1.0j*imagPCs[:,0]
pc2 = realPCs[:,1] + 1.0j*imagPCs[:,1]
pc3 = realPCs[:,2] + 1.0j*imagPCs[:,2]
pc4 = realPCs[:,3] + 1.0j*imagPCs[:,3]
pc5 = realPCs[:,4] + 1.0j*imagPCs[:,5]
# file at 10kpc
scaling = 1e-22 * (10.0 / luminosity_distance)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment