Skip to content
Snippets Groups Projects
Commit 9238ef5f authored by Colm Talbot's avatar Colm Talbot
Browse files

Merge branch '194-plot-multiple-overwrites-labels-with-evidences' into 'master'

Resolve "Plot multiple overwrites labels with evidences"

Closes #194

See merge request Monash/tupak!204
parents d8e813c8 38f6ece9
No related branches found
No related tags found
1 merge request!204Resolve "Plot multiple overwrites labels with evidences"
Pipeline #32114 passed
......@@ -31,6 +31,7 @@ Changes currently on master, but not under a tag.
- Modified how sampling in non-standard parameters is done, the
`non_standard_sampling_parameter_keys` kwarg has been removed
- .prior files are no longer created. The prior is stored in the result object.
- Fix label creation in plot_multiple, evidences and repeated plots.
- Changed the way repr works for priors. The repr can now be used to
re-instantiate the Prior in most cases
- Users can now choose to overwrite existing result files, rather than creating
......
......@@ -701,11 +701,12 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
if evidences:
if np.isnan(results[0].log_bayes_factor):
template = ' $\mathrm{{ln}}(Z)={:1.3g}$'
template = ' $\mathrm{{ln}}(Z)={lnz:1.3g}$'
else:
template = ' $\mathrm{{ln}}(B)={:1.3g}$'
for i, label in enumerate(labels):
labels[i] = label + template.format(results[i].log_bayes_factor)
template = ' $\mathrm{{ln}}(B)={lnbf:1.3g}$'
labels = [template.format(lnz=result.log_evidence,
lnbf=result.log_bayes_factor)
for ii, result in enumerate(results)]
axes = fig.get_axes()
ndim = int(np.sqrt(len(axes)))
......
......@@ -157,10 +157,9 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
result.log_evidence = \
result.log_bayes_factor + result.log_noise_evidence
else:
if likelihood.noise_log_likelihood() is not np.nan:
result.log_noise_evidence = likelihood.noise_log_likelihood()
result.log_bayes_factor = \
result.log_evidence - result.log_noise_evidence
result.log_noise_evidence = likelihood.noise_log_likelihood()
result.log_bayes_factor = \
result.log_evidence - result.log_noise_evidence
if injection_parameters is not None:
result.injection_parameters = injection_parameters
if conversion_function is not None:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment