Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
9bffa289
Commit
9bffa289
authored
5 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Patches
Plain Diff
Overhaul to using pickles and signals
parent
57a23737
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!423
Improvements to checkpointing for emcee/ptemcee
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
bilby/core/sampler/emcee.py
+139
-90
139 additions, 90 deletions
bilby/core/sampler/emcee.py
bilby/core/sampler/ptemcee.py
+56
-93
56 additions, 93 deletions
bilby/core/sampler/ptemcee.py
requirements.txt
+1
-0
1 addition, 0 deletions
requirements.txt
setup.py
+1
-0
1 addition, 0 deletions
setup.py
with
197 additions
and
183 deletions
bilby/core/sampler/emcee.py
+
139
−
90
View file @
9bffa289
from
__future__
import
absolute_import
,
print_function
from
collections
import
namedtuple
import
os
import
signal
import
sys
import
numpy
as
np
from
pandas
import
DataFrame
from
distutils.version
import
LooseVersion
import
dill
as
pickle
from
..utils
import
(
logger
,
get_progress_bar
,
check_directory_exists_and_if_not_mkdir
)
...
...
@@ -66,6 +70,9 @@ class Emcee(MCMCSampler):
self
.
burn_in_fraction
=
burn_in_fraction
self
.
burn_in_act
=
burn_in_act
signal
.
signal
(
signal
.
SIGTERM
,
self
.
checkpoint_and_exit
)
signal
.
signal
(
signal
.
SIGINT
,
self
.
checkpoint_and_exit
)
def
_translate_kwargs
(
self
,
kwargs
):
if
'
nwalkers
'
not
in
kwargs
:
for
equiv
in
self
.
nwalkers_equiv_kwargs
:
...
...
@@ -165,66 +172,139 @@ class Emcee(MCMCSampler):
def
nsteps
(
self
,
nsteps
):
self
.
kwargs
[
'
iterations
'
]
=
nsteps
def
__getstate__
(
self
):
# In order to be picklable with dill, we need to discard the pool
# object before trying.
d
=
self
.
__dict__
d
[
"
_Sampler__kwargs
"
][
"
pool
"
]
=
None
return
d
@property
def
stored_chain
(
self
):
"""
Read the stored zero-temperature chain data in from disk
"""
return
np
.
genfromtxt
(
self
.
checkpoint_info
.
chain_file
,
names
=
True
)
def
set_up_checkpoint
(
self
):
out_dir
=
os
.
path
.
join
(
self
.
outdir
,
'
emcee_{}
'
.
format
(
self
.
label
))
out_file
=
os
.
path
.
join
(
out_dir
,
'
chain.dat
'
)
@property
def
stored_samples
(
self
):
"""
Returns the samples stored on disk
"""
return
self
.
stored_chain
[
self
.
search_parameter_keys
]
if
self
.
resume
:
self
.
load_old_chain
(
out_file
)
else
:
self
.
_set_pos0
()
@property
def
stored_loglike
(
self
):
"""
Returns the log-likelihood stored on disk
"""
return
self
.
stored_chain
[
'
log_l
'
]
@property
def
stored_logprior
(
self
):
"""
Returns the log-prior stored on disk
"""
return
self
.
stored_chain
[
'
log_p
'
]
@property
def
checkpoint_info
(
self
):
"""
Defines various things related to checkpointing and storing data
Returns
-------
checkpoint_info: named_tuple
An object with attributes `sampler_file`, `chain_file`, and
`chain_template`. The first two give paths to where the sampler and
chain data is stored, the last a formatted-str-template with which
to write the chain data to disk
"""
out_dir
=
os
.
path
.
join
(
self
.
outdir
,
'
{}_{}
'
.
format
(
self
.
__class__
.
__name__
,
self
.
label
))
check_directory_exists_and_if_not_mkdir
(
out_dir
)
if
not
os
.
path
.
isfile
(
out_file
):
with
open
(
out_file
,
"
w
"
)
as
ff
:
ff
.
write
(
'
walker
\t
{}
\t
log_l
\n
'
.
format
(
sampler_file
=
os
.
path
.
join
(
out_dir
,
'
sampler.pickle
'
)
# Initialise chain file
chain_file
=
os
.
path
.
join
(
out_dir
,
'
chain.dat
'
)
if
not
os
.
path
.
isfile
(
chain_file
):
with
open
(
chain_file
,
"
w
"
)
as
ff
:
ff
.
write
(
'
walker
\t
{}
\t
log_l
\t
log_p
\n
'
.
format
(
'
\t
'
.
join
(
self
.
search_parameter_keys
)))
template
=
\
chain_
template
=
\
'
{:d}
'
+
'
\t
{:.9e}
'
*
(
len
(
self
.
search_parameter_keys
)
+
2
)
+
'
\n
'
return
out_file
,
template
CheckpointInfo
=
namedtuple
(
'
CheckpointInfo
'
,
[
'
sampler_file
'
,
'
chain_file
'
,
'
chain_template
'
])
def
run_sampler
(
self
):
checkpoint_info
=
CheckpointInfo
(
sampler_file
=
sampler_file
,
chain_file
=
chain_file
,
chain_template
=
chain_template
)
return
checkpoint_info
@property
def
sampler_chain
(
self
):
nsteps
=
self
.
_previous_iterations
return
self
.
sampler
.
chain
[:,
:
nsteps
,
:]
def
checkpoint
(
self
):
"""
Writes a pickle file of the sampler to disk using dill
"""
logger
.
info
(
"
Checkpointing sampler to file {}
"
.
format
(
self
.
checkpoint_info
.
sampler_file
))
with
open
(
self
.
checkpoint_info
.
sampler_file
,
'
wb
'
)
as
f
:
# Overwrites the stored sampler chain with one that is truncated
# to only the completed steps
self
.
sampler
.
_chain
=
self
.
sampler_chain
pickle
.
dump
(
self
.
_sampler
,
f
)
def
checkpoint_and_exit
(
self
,
signum
,
frame
):
logger
.
info
(
"
Recieved signal {}
"
.
format
(
signum
))
self
.
checkpoint
()
sys
.
exit
()
def
_initialise_sampler
(
self
):
import
emcee
tqdm
=
get_progress_bar
()
sampler
=
emcee
.
EnsembleSampler
(
**
self
.
sampler_init_kwargs
)
out_file
,
template
=
self
.
set_up_checkpoint
()
self
.
_sampler
=
emcee
.
EnsembleSampler
(
**
self
.
sampler_init_kwargs
)
def
_set_pos0_for_resume
(
self
):
self
.
pos0
=
self
.
sampler
.
chain
[:,
-
1
,
:]
@property
def
sampler
(
self
):
"""
Returns the ptemcee sampler object
If, alrady initialized, returns the stored _sampler value. Otherwise,
first checks if there is a pickle file from which to load. If there is
not, then initialize the sampler and set the initial random draw
"""
if
hasattr
(
self
,
'
_sampler
'
):
pass
elif
self
.
resume
and
os
.
path
.
isfile
(
self
.
checkpoint_info
.
sampler_file
):
with
open
(
self
.
checkpoint_info
.
sampler_file
,
'
rb
'
)
as
f
:
self
.
_sampler
=
pickle
.
load
(
f
)
self
.
_set_pos0_for_resume
()
else
:
self
.
_initialise_sampler
()
self
.
_set_pos0
()
return
self
.
_sampler
def
write_chains_to_file
(
self
,
sample
):
if
self
.
prerelease
:
points
=
np
.
hstack
([
sample
.
coords
,
sample
.
blobs
])
else
:
points
=
np
.
hstack
([
sample
[
0
],
np
.
array
(
sample
[
3
])])
with
open
(
self
.
checkpoint_info
.
chain_file
,
"
a
"
)
as
ff
:
for
ii
,
point
in
enumerate
(
points
):
ff
.
write
(
self
.
checkpoint_info
.
chain_template
.
format
(
ii
,
*
point
))
def
run_sampler
(
self
):
tqdm
=
get_progress_bar
()
sampler_function_kwargs
=
self
.
sampler_function_kwargs
iterations
=
sampler_function_kwargs
.
pop
(
'
iterations
'
)
iterations
-=
self
.
_previous_iterations
print
(
'
pos0
'
,
self
.
pos0
)
sampler_function_kwargs
[
'
p0
'
]
=
self
.
pos0
for
sample
in
tqdm
(
sampler
.
sample
(
iterations
=
iterations
,
**
sampler_function_kwargs
),
self
.
sampler
.
sample
(
iterations
=
iterations
,
**
sampler_function_kwargs
),
total
=
iterations
):
if
self
.
prerelease
:
points
=
np
.
hstack
([
sample
.
coords
,
sample
.
blobs
])
else
:
points
=
np
.
hstack
([
sample
[
0
],
np
.
array
(
sample
[
3
])])
with
open
(
out_file
,
"
a
"
)
as
ff
:
for
ii
,
point
in
enumerate
(
points
):
ff
.
write
(
template
.
format
(
ii
,
*
point
))
self
.
write_chains_to_file
(
sample
)
self
.
result
.
sampler_output
=
np
.
nan
blobs_flat
=
np
.
array
(
sampler
.
blobs
).
reshape
((
-
1
,
2
))
blobs_flat
=
np
.
array
(
self
.
sampler
.
blobs
).
reshape
((
-
1
,
2
))
log_likelihoods
,
log_priors
=
blobs_flat
.
T
if
self
.
_old_chain
is
not
None
:
chain
=
np
.
vstack
([
self
.
_old_chain
[:,
:
-
2
],
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
))])
log_ls
=
np
.
hstack
([
self
.
_old_chain
[:,
-
2
],
log_likelihoods
])
log_ps
=
np
.
hstack
([
self
.
_old_chain
[:,
-
1
],
log_priors
])
self
.
nsteps
=
chain
.
shape
[
0
]
//
self
.
nwalkers
else
:
chain
=
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
))
log_ls
=
log_likelihoods
log_ps
=
log_priors
chain
=
self
.
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
))
log_ls
=
log_likelihoods
log_ps
=
log_priors
self
.
calculate_autocorrelation
(
chain
)
self
.
print_nburn_logging_info
()
self
.
result
.
nburn
=
self
.
nburn
...
...
@@ -236,13 +316,27 @@ class Emcee(MCMCSampler):
self
.
result
.
samples
=
chain
[
n_samples
:,
:]
self
.
result
.
log_likelihood_evaluations
=
log_ls
[
n_samples
:]
self
.
result
.
log_prior_evaluations
=
log_ps
[
n_samples
:]
self
.
result
.
walkers
=
sampler
.
chain
self
.
result
.
walkers
=
self
.
sampler
.
chain
self
.
result
.
log_evidence
=
np
.
nan
self
.
result
.
log_evidence_err
=
np
.
nan
return
self
.
result
@property
def
_previous_iterations
(
self
):
"""
Returns the number of iterations that the sampler has saved
This is used when loading in a sampler from a pickle file to figure out
how much of the run has already been completed
"""
return
len
(
self
.
sampler
.
blobs
)
def
_draw_pos0_from_prior
(
self
):
return
[
self
.
get_random_draw_from_prior
()
for
_
in
range
(
self
.
nwalkers
)]
return
np
.
array
(
[
self
.
get_random_draw_from_prior
()
for
_
in
range
(
self
.
nwalkers
)])
@property
def
_pos0_shape
(
self
):
return
(
self
.
nwalkers
,
self
.
ndim
)
def
_set_pos0
(
self
):
if
self
.
pos0
is
not
None
:
...
...
@@ -250,9 +344,9 @@ class Emcee(MCMCSampler):
if
isinstance
(
self
.
pos0
,
DataFrame
):
self
.
pos0
=
self
.
pos0
[
self
.
search_parameter_keys
].
values
elif
type
(
self
.
pos0
)
in
(
list
,
np
.
ndarray
):
self
.
pos0
=
np
.
squeeze
(
self
.
kwargs
[
'
pos0
'
]
)
self
.
pos0
=
np
.
squeeze
(
self
.
pos0
)
if
self
.
pos0
.
shape
!=
(
self
.
nwalkers
,
self
.
ndim
)
:
if
self
.
pos0
.
shape
!=
self
.
_pos0_shape
:
raise
ValueError
(
'
Input pos0 should be of shape ndim, nwalkers
'
)
logger
.
debug
(
"
Checking input pos0
"
)
...
...
@@ -262,51 +356,6 @@ class Emcee(MCMCSampler):
logger
.
debug
(
"
Generating initial walker positions from prior
"
)
self
.
pos0
=
self
.
_draw_pos0_from_prior
()
@property
def
_old_chain
(
self
):
try
:
old_chain
=
self
.
__old_chain
n
=
old_chain
.
shape
[
0
]
idx
=
n
-
np
.
mod
(
n
,
self
.
nwalkers
)
return
old_chain
[:
idx
,
:]
except
AttributeError
:
return
None
@_old_chain.setter
def
_old_chain
(
self
,
old_chain
):
self
.
__old_chain
=
old_chain
@property
def
_previous_iterations
(
self
):
if
self
.
_old_chain
is
None
:
return
0
try
:
return
self
.
_old_chain
.
shape
[
0
]
//
self
.
nwalkers
except
AttributeError
:
logger
.
warning
(
"
Unable to calculate previous iterations from checkpoint,
"
"
defaulting to zero
"
)
return
0
def
load_old_chain
(
self
,
file_name
=
None
):
if
file_name
is
None
:
out_dir
=
os
.
path
.
join
(
self
.
outdir
,
'
emcee_{}
'
.
format
(
self
.
label
))
file_name
=
os
.
path
.
join
(
out_dir
,
'
chain.dat
'
)
if
os
.
path
.
isfile
(
file_name
):
try
:
old_chain
=
np
.
genfromtxt
(
file_name
,
skip_header
=
1
)
self
.
pos0
=
[
np
.
squeeze
(
old_chain
[
-
(
self
.
nwalkers
-
ii
),
1
:
-
2
])
for
ii
in
range
(
self
.
nwalkers
)]
self
.
_old_chain
=
old_chain
[:
-
self
.
nwalkers
+
1
,
1
:]
logger
.
info
(
'
Resuming from {}
'
.
format
(
os
.
path
.
abspath
(
file_name
)))
except
Exception
:
logger
.
warning
(
'
Failed to resume. Corrupt checkpoint file {}.
'
.
format
(
file_name
))
self
.
_set_pos0
()
else
:
logger
.
warning
(
'
Failed to resume. {} not found.
'
.
format
(
file_name
))
self
.
_set_pos0
()
def
lnpostfn
(
self
,
theta
):
log_prior
=
self
.
log_prior
(
theta
)
if
np
.
isinf
(
log_prior
):
...
...
This diff is collapsed.
Click to expand it.
bilby/core/sampler/ptemcee.py
+
56
−
93
View file @
9bffa289
from
__future__
import
absolute_import
,
division
,
print_function
import
os
from
collections
import
namedtuple
import
numpy
as
np
from
..utils
import
(
logger
,
get_progress_bar
,
check_directory_exists_and_if_not_mkdir
)
from
..utils
import
logger
,
get_progress_bar
from
.
import
Emcee
from
.base_sampler
import
SamplerError
...
...
@@ -31,12 +27,11 @@ class Ptemcee(Emcee):
The number of temperatures used by ptemcee
"""
default_kwargs
=
dict
(
ntemps
=
2
,
nwalkers
=
500
,
Tmax
=
None
,
betas
=
None
,
threads
=
1
,
pool
=
None
,
a
=
2.0
,
loglargs
=
[],
logpargs
=
[],
loglkwargs
=
{},
logpkwargs
=
{},
adaptation_lag
=
10000
,
adaptation_time
=
100
,
random
=
None
,
iterations
=
100
,
thin
=
1
,
storechain
=
True
,
adapt
=
True
,
swap_ratios
=
False
,
)
default_kwargs
=
dict
(
ntemps
=
2
,
nwalkers
=
500
,
Tmax
=
None
,
betas
=
None
,
threads
=
1
,
pool
=
None
,
a
=
2.0
,
loglargs
=
[],
logpargs
=
[],
loglkwargs
=
{},
logpkwargs
=
{},
adaptation_lag
=
10000
,
adaptation_time
=
100
,
random
=
None
,
iterations
=
100
,
thin
=
1
,
storechain
=
True
,
adapt
=
True
,
swap_ratios
=
False
)
def
__init__
(
self
,
likelihood
,
priors
,
outdir
=
'
outdir
'
,
label
=
'
label
'
,
use_ratio
=
False
,
plot
=
False
,
skip_import_verification
=
False
,
...
...
@@ -61,120 +56,88 @@ class Ptemcee(Emcee):
if
key
not
in
self
.
sampler_function_kwargs
}
@property
def
checkpoint_info
(
self
):
out_dir
=
os
.
path
.
join
(
self
.
outdir
,
'
ptemcee_{}
'
.
format
(
self
.
label
))
chain_file
=
os
.
path
.
join
(
out_dir
,
'
chain.dat
'
)
last_pos_file
=
os
.
path
.
join
(
out_dir
,
'
last_pos.npy
'
)
check_directory_exists_and_if_not_mkdir
(
out_dir
)
if
not
os
.
path
.
isfile
(
chain_file
):
with
open
(
chain_file
,
"
w
"
)
as
ff
:
ff
.
write
(
'
walker
\t
{}
\t
log_l
\t
log_p
\n
'
.
format
(
'
\t
'
.
join
(
self
.
search_parameter_keys
)))
template
=
\
'
{:d}
'
+
'
\t
{:.9e}
'
*
(
len
(
self
.
search_parameter_keys
)
+
2
)
+
'
\n
'
CheckpointInfo
=
namedtuple
(
'
CheckpointInfo
'
,
[
'
last_pos_file
'
,
'
chain_file
'
,
'
template
'
])
checkpoint_info
=
CheckpointInfo
(
last_pos_file
=
last_pos_file
,
chain_file
=
chain_file
,
template
=
template
)
return
checkpoint_info
def
ntemps
(
self
):
return
self
.
kwargs
[
'
ntemps
'
]
def
_draw_pos0_from_prior
(
self
):
# for ptemcee, the pos0 has the shape ntemps, nwalkers, ndim
return
[[
self
.
get_random_draw_from_prior
()
for
_
in
range
(
self
.
nwalkers
)]
for
_
in
range
(
self
.
kwargs
[
'
ntemps
'
])]
@property
def
_old_chain
(
self
):
try
:
old_chain
=
self
.
__old_chain
n
=
old_chain
.
shape
[
0
]
idx
=
n
-
np
.
mod
(
n
,
self
.
nwalkers
)
return
old_chain
[:
idx
]
except
AttributeError
:
return
None
@_old_chain.setter
def
_old_chain
(
self
,
old_chain
):
self
.
__old_chain
=
old_chain
def
_set_pos0_for_resume
(
self
):
self
.
pos0
=
None
@property
def
stored_chain
(
self
):
return
np
.
genfromtxt
(
self
.
checkpoint_info
.
chain_file
,
names
=
True
)
def
_previous_iterations
(
self
):
"""
Returns the number of iterations that the sampler has saved
@property
def
stored_samples
(
self
):
return
self
.
stored_chain
[
self
.
search_parameter_keys
]
This is used when loading in a sampler from a pickle file to figure out
how much of the run has already been completed
"""
return
self
.
sampler
.
time
@property
def
stored_loglike
(
self
):
return
self
.
stored_chain
[
'
log_l
'
]
def
sampler_chain
(
self
):
nsteps
=
self
.
_previous_iterations
return
self
.
sampler
.
chain
[:,
:,
:
nsteps
,
:]
@property
def
stored_logprior
(
self
):
return
self
.
stored_chain
[
'
log_p
'
]
def
load_old_chain
(
self
):
try
:
last_pos
=
np
.
load
(
self
.
checkpoint_info
.
last_pos_file
)
self
.
pos0
=
last_pos
self
.
_old_chain
=
self
.
stored_samples
logger
.
info
(
'
Resuming from {} with {} iterations
'
.
format
(
self
.
checkpoint_info
.
chain_file
,
self
.
_previous_iterations
))
except
Exception
:
logger
.
info
(
'
Unable to resume
'
)
self
.
_set_pos0
()
def
_pos0_shape
(
self
):
return
(
self
.
ntemps
,
self
.
nwalkers
,
self
.
ndim
)
def
run
_sampler
(
self
):
def
_initialise
_sampler
(
self
):
import
ptemcee
tqdm
=
get_progress_bar
()
sampler
=
ptemcee
.
Sampler
(
dim
=
self
.
ndim
,
logl
=
self
.
log_likelihood
,
logp
=
self
.
log_prior
,
**
self
.
sampler_init_kwargs
)
if
self
.
resume
:
self
.
load_old_chain
()
else
:
self
.
_set_pos0
()
self
.
_sampler
=
ptemcee
.
Sampler
(
dim
=
self
.
ndim
,
logl
=
self
.
log_likelihood
,
logp
=
self
.
log_prior
,
**
self
.
sampler_init_kwargs
)
def
print_tswap_acceptance_fraction
(
self
):
logger
.
info
(
"
Sampler per-chain tswap acceptance fraction = {}
"
.
format
(
self
.
sampler
.
tswap_acceptance_fraction
))
def
write_chains_to_file
(
self
,
pos
,
loglike
,
logpost
):
with
open
(
self
.
checkpoint_info
.
chain_file
,
"
a
"
)
as
ff
:
loglike
=
np
.
squeeze
(
loglike
[
0
,
:])
logprior
=
np
.
squeeze
(
logpost
[
0
,
:])
-
loglike
for
ii
,
(
point
,
logl
,
logp
)
in
enumerate
(
zip
(
pos
[
0
,
:,
:],
loglike
,
logprior
)):
line
=
np
.
concatenate
((
point
,
[
logl
,
logp
]))
ff
.
write
(
self
.
checkpoint_info
.
chain_template
.
format
(
ii
,
*
line
))
def
run_sampler
(
self
):
tqdm
=
get_progress_bar
()
sampler_function_kwargs
=
self
.
sampler_function_kwargs
iterations
=
sampler_function_kwargs
.
pop
(
'
iterations
'
)
iterations
-=
self
.
_previous_iterations
# main iteration loop
for
pos
,
logpost
,
loglike
in
tqdm
(
sampler
.
sample
(
self
.
pos0
,
iterations
=
iterations
,
**
sampler_function_kwargs
),
self
.
sampler
.
sample
(
self
.
pos0
,
iterations
=
iterations
,
**
sampler_function_kwargs
),
total
=
iterations
):
np
.
save
(
self
.
checkpoint_info
.
last_pos_file
,
pos
)
with
open
(
self
.
checkpoint_info
.
chain_file
,
"
a
"
)
as
ff
:
loglike
=
np
.
squeeze
(
loglike
[:
1
,
:])
logprior
=
np
.
squeeze
(
logpost
[:
1
,
:])
-
loglike
for
ii
,
(
point
,
logl
,
logp
)
in
enumerate
(
zip
(
pos
[
0
,
:,
:],
loglike
,
logprior
)):
line
=
np
.
concatenate
((
point
,
[
logl
,
logp
]))
ff
.
write
(
self
.
checkpoint_info
.
template
.
format
(
ii
,
*
line
))
self
.
calculate_autocorrelation
(
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
)))
self
.
write_chains_to_file
(
pos
,
loglike
,
logpost
)
self
.
calculate_autocorrelation
(
self
.
sampler
.
chain
.
reshape
((
-
1
,
self
.
ndim
)))
self
.
result
.
sampler_output
=
np
.
nan
self
.
print_nburn_logging_info
()
self
.
print_tswap_acceptance_fraction
()
self
.
result
.
nburn
=
self
.
nburn
if
self
.
result
.
nburn
>
self
.
nsteps
:
raise
SamplerError
(
"
The run has finished, but the chain is not burned in:
"
"
`nburn < nsteps`. Try increasing the number of steps.
"
)
walkers
=
self
.
stored_samples
.
view
((
float
,
self
.
ndim
))
walkers
=
walkers
.
reshape
(
self
.
nwalkers
,
self
.
nsteps
,
self
.
ndim
)
self
.
result
.
walkers
=
walkers
self
.
result
.
samples
=
walkers
[:,
self
.
nburn
:,
:].
reshape
((
-
1
,
self
.
ndim
))
self
.
result
.
samples
=
self
.
sampler
.
chain
[
0
,
:,
self
.
nburn
:,
:].
reshape
(
(
-
1
,
self
.
ndim
))
self
.
result
.
walkers
=
self
.
sampler
.
chain
[
0
,
:,
:,
:]
n_samples
=
self
.
nwalkers
*
self
.
nburn
self
.
result
.
log_likelihood_evaluations
=
self
.
stored_loglike
[
n_samples
:]
self
.
result
.
log_prior_evaluations
=
self
.
stored_logprior
[
n_samples
:]
self
.
result
.
betas
=
sampler
.
betas
self
.
result
.
betas
=
self
.
sampler
.
betas
self
.
result
.
log_evidence
,
self
.
result
.
log_evidence_err
=
\
sampler
.
log_evidence_estimate
(
sampler
.
loglikelihood
,
self
.
nburn
/
self
.
nsteps
)
self
.
sampler
.
log_evidence_estimate
(
self
.
sampler
.
loglikelihood
,
self
.
nburn
/
self
.
nsteps
)
return
self
.
result
This diff is collapsed.
Click to expand it.
requirements.txt
+
1
−
0
View file @
9bffa289
...
...
@@ -6,3 +6,4 @@ matplotlib>=2.0
scipy
>=0.16
pandas
mock
dill
This diff is collapsed.
Click to expand it.
setup.py
+
1
−
0
View file @
9bffa289
...
...
@@ -79,6 +79,7 @@ setup(name='bilby',
'
future
'
,
'
dynesty
'
,
'
corner
'
,
'
dill
'
,
'
numpy>=1.9
'
,
'
matplotlib>=2.0
'
,
'
pandas
'
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment