Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
9dca0bef
Commit
9dca0bef
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
fix definition of matched filter SNR, rename 'd_inner_h'
parent
1f724ae8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!306
Resolve "Discrepancy in definitions of matched filter SNR"
Pipeline
#42161
failed
6 years ago
Stage: test
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
bilby/gw/conversion.py
+6
-6
6 additions, 6 deletions
bilby/gw/conversion.py
bilby/gw/detector.py
+27
-9
27 additions, 9 deletions
bilby/gw/detector.py
bilby/gw/likelihood.py
+18
-18
18 additions, 18 deletions
bilby/gw/likelihood.py
with
51 additions
and
33 deletions
bilby/gw/conversion.py
+
6
−
6
View file @
9dca0bef
...
...
@@ -933,7 +933,7 @@ def compute_snrs(sample, likelihood):
for
ifo
in
likelihood
.
interferometers
:
signal
=
ifo
.
get_detector_response
(
signal_polarizations
,
sample
)
sample
[
'
{}_matched_filter_snr
'
.
format
(
ifo
.
name
)]
=
\
ifo
.
matched_filter_snr
_squared
(
signal
=
signal
)
**
0.5
ifo
.
matched_filter_snr
(
signal
=
signal
)
sample
[
'
{}_optimal_snr
'
.
format
(
ifo
.
name
)]
=
\
ifo
.
optimal_snr_squared
(
signal
=
signal
)
**
0.5
else
:
...
...
@@ -950,7 +950,7 @@ def compute_snrs(sample, likelihood):
signal
=
ifo
.
get_detector_response
(
signal_polarizations
,
sample
.
iloc
[
ii
])
matched_filter_snrs
[
ifo
.
name
].
append
(
ifo
.
matched_filter_snr
_squared
(
signal
=
signal
)
**
0.5
)
ifo
.
matched_filter_snr
(
signal
=
signal
))
optimal_snrs
[
ifo
.
name
].
append
(
ifo
.
optimal_snr_squared
(
signal
=
signal
)
**
0.5
)
...
...
@@ -1023,20 +1023,20 @@ def _generate_distance_sample_from_marginalized_likelihood(sample, likelihood):
"""
signal_polarizations
=
\
likelihood
.
waveform_generator
.
frequency_domain_strain
(
sample
)
rho_mf_sq
=
0
d_inner_h
=
0
rho_opt_sq
=
0
for
ifo
in
likelihood
.
interferometers
:
signal
=
ifo
.
get_detector_response
(
signal_polarizations
,
sample
)
rho_mf_sq
+=
ifo
.
matched_filter_snr_squared
(
signal
=
signal
)
d_inner_h
+=
ifo
.
inner_product
(
signal
=
signal
)
rho_opt_sq
+=
ifo
.
optimal_snr_squared
(
signal
=
signal
)
rho_mf_sq_dist
=
(
rho_mf_sq
*
sample
[
'
luminosity_distance
'
]
/
d_inner_h_dist
=
(
d_inner_h
*
sample
[
'
luminosity_distance
'
]
/
likelihood
.
_distance_array
)
rho_opt_sq_dist
=
(
rho_opt_sq
*
sample
[
'
luminosity_distance
'
]
**
2
/
likelihood
.
_distance_array
**
2
)
distance_log_like
=
(
rho_mf_sq
_dist
.
real
-
rho_opt_sq_dist
.
real
/
2
)
distance_log_like
=
(
d_inner_h
_dist
.
real
-
rho_opt_sq_dist
.
real
/
2
)
distance_post
=
np
.
exp
(
distance_log_like
-
max
(
distance_log_like
))
*
\
likelihood
.
distance_prior_array
...
...
This diff is collapsed.
Click to expand it.
bilby/gw/detector.py
+
27
−
9
View file @
9dca0bef
...
...
@@ -1357,7 +1357,7 @@ class Interferometer(object):
self
.
meta_data
[
'
optimal_SNR
'
]
=
(
np
.
sqrt
(
self
.
optimal_snr_squared
(
signal
=
signal_ifo
)).
real
)
self
.
meta_data
[
'
matched_filter_SNR
'
]
=
(
np
.
sqrt
(
self
.
matched_filter_snr
_squared
(
signal
=
signal_ifo
))
)
self
.
matched_filter_snr
(
signal
=
signal_ifo
))
self
.
meta_data
[
'
parameters
'
]
=
parameters
logger
.
info
(
"
Injected signal in {}:
"
.
format
(
self
.
name
))
...
...
@@ -1499,11 +1499,29 @@ class Interferometer(object):
-------
float: The optimal signal to noise ratio possible squared
"""
return
gwutils
.
optimal_snr_squared
(
signal
=
signal
,
power_spectral_density
=
self
.
power_spectral_density_array
,
duration
=
self
.
strain_data
.
duration
)
return
gwutils
.
optimal_snr_squared
(
signal
=
signal
,
power_spectral_density
=
self
.
power_spectral_density_array
,
duration
=
self
.
strain_data
.
duration
)
def
matched_filter_snr_squared
(
self
,
signal
):
def
inner_product
(
self
,
signal
):
"""
Parameters
----------
signal: array_like
Array containing the signal
Returns
-------
float: The optimal signal to noise ratio possible squared
"""
return
gwutils
.
noise_weighted_inner_product
(
aa
=
signal
,
bb
=
self
.
frequency_array
,
power_spectral_density
=
self
.
power_spectral_density_array
,
duration
=
self
.
strain_data
.
duration
)
def
matched_filter_snr
(
self
,
signal
):
"""
Parameters
...
...
@@ -1516,10 +1534,10 @@ class Interferometer(object):
float: The matched filter signal to noise ratio squared
"""
return
gwutils
.
matched_filter_snr
_squared
(
signal
=
signal
,
frequency_domain_strain
=
self
.
frequency_domain_strain
,
power_spectral_density
=
self
.
power_spectral_density_array
,
duration
=
self
.
strain_data
.
duration
)
return
gwutils
.
matched_filter_snr
(
signal
=
signal
,
frequency_domain_strain
=
self
.
frequency_domain_strain
,
power_spectral_density
=
self
.
power_spectral_density_array
,
duration
=
self
.
strain_data
.
duration
)
@property
def
whitened_frequency_domain_strain
(
self
):
...
...
This diff is collapsed.
Click to expand it.
bilby/gw/likelihood.py
+
18
−
18
View file @
9dca0bef
...
...
@@ -156,19 +156,19 @@ class GravitationalWaveTransient(likelihood.Likelihood):
if
waveform_polarizations
is
None
:
return
np
.
nan_to_num
(
-
np
.
inf
)
matched_filter_snr_squared
=
0
d_inner_h
=
0
optimal_snr_squared
=
0
matched_filter_snr
_squared_tc_array
=
np
.
zeros
(
d_inner_h
_squared_tc_array
=
np
.
zeros
(
self
.
interferometers
.
frequency_array
[
0
:
-
1
].
shape
,
dtype
=
np
.
complex128
)
for
interferometer
in
self
.
interferometers
:
signal_ifo
=
interferometer
.
get_detector_response
(
waveform_polarizations
,
self
.
parameters
)
matched_filter_snr_squared
+=
interferometer
.
matched_filter_snr_squared
(
signal
=
signal_ifo
)
d_inner_h
+=
interferometer
.
inner_product
(
signal
=
signal_ifo
)
optimal_snr_squared
+=
interferometer
.
optimal_snr_squared
(
signal
=
signal_ifo
)
if
self
.
time_marginalization
:
matched_filter_snr
_squared_tc_array
+=
\
d_inner_h
_squared_tc_array
+=
\
4
/
self
.
waveform_generator
.
duration
*
np
.
fft
.
fft
(
signal_ifo
[
0
:
-
1
]
*
interferometer
.
frequency_domain_strain
.
conjugate
()[
0
:
-
1
]
/
...
...
@@ -178,7 +178,7 @@ class GravitationalWaveTransient(likelihood.Likelihood):
if
self
.
distance_marginalization
:
rho_mf_ref_tc_array
,
rho_opt_ref
=
self
.
_setup_rho
(
matched_filter_snr
_squared_tc_array
,
optimal_snr_squared
)
d_inner_h
_squared_tc_array
,
optimal_snr_squared
)
if
self
.
phase_marginalization
:
dist_marged_log_l_tc_array
=
self
.
_interp_dist_margd_loglikelihood
(
abs
(
rho_mf_ref_tc_array
),
rho_opt_ref
)
...
...
@@ -191,34 +191,34 @@ class GravitationalWaveTransient(likelihood.Likelihood):
b
=
self
.
time_prior_array
)
elif
self
.
phase_marginalization
:
log_l
=
logsumexp
(
self
.
_bessel_function_interped
(
abs
(
matched_filter_snr
_squared_tc_array
)),
d_inner_h
_squared_tc_array
)),
b
=
self
.
time_prior_array
)
-
optimal_snr_squared
/
2
else
:
log_l
=
logsumexp
(
matched_filter_snr
_squared_tc_array
.
real
,
d_inner_h
_squared_tc_array
.
real
,
b
=
self
.
time_prior_array
)
-
optimal_snr_squared
/
2
elif
self
.
distance_marginalization
:
rho_mf_ref
,
rho_opt_ref
=
self
.
_setup_rho
(
matched_filter_snr_squared
,
optimal_snr_squared
)
rho_mf_ref
,
rho_opt_ref
=
self
.
_setup_rho
(
d_inner_h
,
optimal_snr_squared
)
if
self
.
phase_marginalization
:
rho_mf_ref
=
abs
(
rho_mf_ref
)
log_l
=
self
.
_interp_dist_margd_loglikelihood
(
rho_mf_ref
.
real
,
rho_opt_ref
)[
0
]
elif
self
.
phase_marginalization
:
matched_filter_snr_squared
=
self
.
_bessel_function_interped
(
abs
(
matched_filter_snr_squared
))
log_l
=
matched_filter_snr_squared
-
optimal_snr_squared
/
2
d_inner_h
=
self
.
_bessel_function_interped
(
abs
(
d_inner_h
))
log_l
=
d_inner_h
-
optimal_snr_squared
/
2
else
:
log_l
=
matched_filter_snr_squared
.
real
-
optimal_snr_squared
/
2
log_l
=
d_inner_h
.
real
-
optimal_snr_squared
/
2
return
log_l
.
real
def
_setup_rho
(
self
,
matched_filter_snr_squared
,
optimal_snr_squared
):
def
_setup_rho
(
self
,
d_inner_h
,
optimal_snr_squared
):
rho_opt_ref
=
(
optimal_snr_squared
.
real
*
self
.
parameters
[
'
luminosity_distance
'
]
**
2
/
self
.
_ref_dist
**
2.
)
rho_mf_ref
=
matched_filter_snr_squared
*
\
self
.
parameters
[
'
luminosity_distance
'
]
/
self
.
_ref_dist
rho_mf_ref
=
(
d_inner_h
*
self
.
parameters
[
'
luminosity_distance
'
]
/
self
.
_ref_dist
)
return
rho_mf_ref
,
rho_opt_ref
def
log_likelihood
(
self
):
...
...
@@ -262,12 +262,12 @@ class GravitationalWaveTransient(likelihood.Likelihood):
for
ii
,
rho_opt_ref
in
enumerate
(
self
.
_rho_opt_ref_array
):
for
jj
,
rho_mf_ref
in
enumerate
(
self
.
_rho_mf_ref_array
):
optimal_snr_squared_array
=
rho_opt_ref
*
self
.
_ref_dist
**
2.
/
self
.
_distance_array
**
2
matched_filter_snr_squared
_array
=
rho_mf_ref
*
self
.
_ref_dist
/
self
.
_distance_array
d_inner_h
_array
=
rho_mf_ref
*
self
.
_ref_dist
/
self
.
_distance_array
if
self
.
phase_marginalization
:
matched_filter_snr_squared
_array
=
\
self
.
_bessel_function_interped
(
abs
(
matched_filter_snr_squared
_array
))
d_inner_h
_array
=
\
self
.
_bessel_function_interped
(
abs
(
d_inner_h
_array
))
self
.
_dist_margd_loglikelihood_array
[
ii
][
jj
]
=
\
logsumexp
(
matched_filter_snr_squared
_array
-
optimal_snr_squared_array
/
2
,
logsumexp
(
d_inner_h
_array
-
optimal_snr_squared_array
/
2
,
b
=
self
.
distance_prior_array
*
self
.
_delta_distance
)
log_norm
=
logsumexp
(
0.
/
self
.
_distance_array
-
0.
/
self
.
_distance_array
**
2.
,
b
=
self
.
distance_prior_array
*
self
.
_delta_distance
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment