Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
b43227b0
There was a problem fetching the pipeline summary.
Commit
b43227b0
authored
6 years ago
by
Colm Talbot
Browse files
Options
Downloads
Patches
Plain Diff
make resuming work
parent
ce5b40aa
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!74
Dynesty checkpointing
Pipeline
#
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tupak/core/sampler.py
+121
-17
121 additions, 17 deletions
tupak/core/sampler.py
with
121 additions
and
17 deletions
tupak/core/sampler.py
+
121
−
17
View file @
b43227b0
...
...
@@ -7,6 +7,8 @@ import sys
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
datetime
import
deepdish
from
scipy.misc
import
logsumexp
from
tupak.core.result
import
Result
,
read_in_result
from
tupak.core.prior
import
Prior
...
...
@@ -434,8 +436,8 @@ class Dynesty(Sampler):
@kwargs.setter
def
kwargs
(
self
,
kwargs
):
self
.
__kwargs
=
dict
(
dlogz
=
0.1
,
bound
=
'
multi
'
,
sample
=
'
rwalk
'
,
walks
=
self
.
ndim
*
5
,
verbose
=
True
,
n_check_point
=
5
000
)
self
.
__kwargs
=
dict
(
dlogz
=
0.1
,
bound
=
'
multi
'
,
sample
=
'
rwalk
'
,
resume
=
True
,
walks
=
self
.
ndim
*
5
,
verbose
=
True
,
n_check_point
=
1000
000
)
self
.
__kwargs
.
update
(
kwargs
)
if
'
nlive
'
not
in
self
.
__kwargs
:
for
equiv
in
[
'
nlives
'
,
'
n_live_points
'
,
'
npoint
'
,
'
npoints
'
]:
...
...
@@ -475,10 +477,6 @@ class Dynesty(Sampler):
print_str
=
"
\r
{}| {}={:6.3f} +/- {:6.3f} | dlogz: {:6.3f} > {:6.3f}
"
.
format
(
niter
,
key
,
logz
,
logzerr
,
delta_logz
,
dlogz
)
with
open
(
self
.
sample_file
,
'
a
'
)
as
sample_file
:
sample_file
.
write
(
'
\t
'
.
join
([
str
(
param
)
for
param
in
vstar
])
+
'
\t
{}
\t
{}
\t
{}
\n
'
.
format
(
loglstar
,
logz
,
logwt
))
# Printing.
sys
.
stderr
.
write
(
print_str
)
sys
.
stderr
.
flush
()
...
...
@@ -486,24 +484,21 @@ class Dynesty(Sampler):
def
_run_external_sampler
(
self
):
dynesty
=
self
.
external_sampler
self
.
sample_file
=
'
{}/{}.samples
'
.
format
(
self
.
outdir
,
self
.
label
)
if
os
.
path
.
isfile
(
self
.
sample_file
):
os
.
rename
(
self
.
sample_file
,
self
.
sample_file
+
'
_old
'
)
with
open
(
self
.
sample_file
,
'
w
'
)
as
sample_file
:
sample_file
.
write
(
'
\t
'
.
join
([
key
for
key
in
self
.
priors
.
keys
()]))
sample_file
.
write
(
'
\t
logl
\t
logz
\t
logwt
\n
'
)
if
self
.
kwargs
.
get
(
'
dynamic
'
,
False
)
is
False
:
nested_sampler
=
dynesty
.
NestedSampler
(
loglikelihood
=
self
.
log_likelihood
,
prior_transform
=
self
.
prior_transform
,
ndim
=
self
.
ndim
,
**
self
.
kwargs
)
old_ncall
=
0
if
self
.
kwargs
[
'
resume
'
]:
resume
=
self
.
read_saved_state
(
nested_sampler
)
if
resume
:
logging
.
info
(
'
Resuming from previous run.
'
)
old_ncall
=
nested_sampler
.
ncall
maxcall
=
self
.
kwargs
[
'
n_check_point
'
]
# maxcall = 5000
while
True
:
maxcall
+=
self
.
kwargs
[
'
n_check_point
'
]
print
(
nested_sampler
.
ncall
,
'
fhdslahfjkldsahfsa
'
)
nested_sampler
.
run_nested
(
dlogz
=
self
.
kwargs
[
'
dlogz
'
],
print_progress
=
self
.
kwargs
[
'
verbose
'
],
...
...
@@ -511,8 +506,12 @@ class Dynesty(Sampler):
add_live
=
False
)
if
nested_sampler
.
ncall
==
old_ncall
:
break
print
(
old_ncall
,
nested_sampler
.
ncall
)
old_ncall
=
nested_sampler
.
ncall
self
.
write_current_state
(
nested_sampler
)
self
.
read_saved_state
(
nested_sampler
)
nested_sampler
.
run_nested
(
dlogz
=
self
.
kwargs
[
'
dlogz
'
],
print_progress
=
self
.
kwargs
[
'
verbose
'
],
...
...
@@ -538,6 +537,111 @@ class Dynesty(Sampler):
self
.
generate_trace_plots
(
out
)
return
self
.
result
def
read_saved_state
(
self
,
nested_sampler
):
resume_file
=
'
{}/{}_resume.h5
'
.
format
(
self
.
outdir
,
self
.
label
)
if
os
.
path
.
isfile
(
resume_file
):
saved_state
=
deepdish
.
io
.
load
(
resume_file
)
nested_sampler
.
saved_u
=
list
(
saved_state
[
'
unit_cube_samples
'
])
nested_sampler
.
saved_v
=
list
(
saved_state
[
'
physical_samples
'
])
nested_sampler
.
saved_logl
=
list
(
saved_state
[
'
sample_likelihoods
'
])
nested_sampler
.
saved_logvol
=
list
(
saved_state
[
'
sample_log_volume
'
])
nested_sampler
.
saved_logwt
=
list
(
saved_state
[
'
sample_log_weights
'
])
nested_sampler
.
saved_logz
=
list
(
saved_state
[
'
cumulative_log_evidence
'
])
nested_sampler
.
saved_logzvar
=
list
(
saved_state
[
'
cumulative_log_evidence_error
'
])
nested_sampler
.
saved_id
=
list
(
saved_state
[
'
id
'
])
nested_sampler
.
saved_it
=
list
(
saved_state
[
'
it
'
])
nested_sampler
.
saved_nc
=
list
(
saved_state
[
'
nc
'
])
nested_sampler
.
saved_boundidx
=
list
(
saved_state
[
'
boundidx
'
])
nested_sampler
.
saved_bounditer
=
list
(
saved_state
[
'
bounditer
'
])
nested_sampler
.
saved_scale
=
list
(
saved_state
[
'
scale
'
])
nested_sampler
.
saved_h
=
list
(
saved_state
[
'
cumulative_information
'
])
nested_sampler
.
ncall
=
saved_state
[
'
ncall
'
]
nested_sampler
.
live_logl
=
list
(
saved_state
[
'
live_logl
'
])
nested_sampler
.
it
=
saved_state
[
'
iteration
'
]
+
1
nested_sampler
.
live_u
=
saved_state
[
'
live_u
'
]
nested_sampler
.
live_v
=
saved_state
[
'
live_v
'
]
nested_sampler
.
nlive
=
saved_state
[
'
nlive
'
]
nested_sampler
.
live_bound
=
saved_state
[
'
live_bound
'
]
nested_sampler
.
live_it
=
saved_state
[
'
live_it
'
]
nested_sampler
.
added_live
=
saved_state
[
'
added_live
'
]
return
True
else
:
return
False
def
write_current_state
(
self
,
nested_sampler
):
resume_file
=
'
{}/{}_resume.h5
'
.
format
(
self
.
outdir
,
self
.
label
)
if
os
.
path
.
isfile
(
resume_file
):
saved_state
=
deepdish
.
io
.
load
(
resume_file
)
print
(
np
.
shape
(
saved_state
[
'
sample_likelihoods
'
]),
np
.
shape
(
nested_sampler
.
saved_logl
))
current_state
=
dict
(
unit_cube_samples
=
np
.
vstack
([
saved_state
[
'
unit_cube_samples
'
],
nested_sampler
.
saved_u
[
1
:]]),
physical_samples
=
np
.
vstack
([
saved_state
[
'
physical_samples
'
],
nested_sampler
.
saved_v
[
1
:]]),
sample_likelihoods
=
np
.
concatenate
([
saved_state
[
'
sample_likelihoods
'
],
nested_sampler
.
saved_logl
[
1
:]]),
sample_log_volume
=
np
.
concatenate
([
saved_state
[
'
sample_log_volume
'
],
nested_sampler
.
saved_logvol
[
1
:]]),
sample_log_weights
=
np
.
concatenate
([
saved_state
[
'
sample_log_weights
'
],
nested_sampler
.
saved_logwt
[
1
:]]),
cumulative_log_evidence
=
np
.
concatenate
([
saved_state
[
'
cumulative_log_evidence
'
],
nested_sampler
.
saved_logz
[
1
:]]),
cumulative_log_evidence_error
=
np
.
concatenate
([
saved_state
[
'
cumulative_log_evidence_error
'
],
nested_sampler
.
saved_logzvar
[
1
:]]),
cumulative_information
=
np
.
concatenate
([
saved_state
[
'
cumulative_information
'
],
nested_sampler
.
saved_h
[
1
:]]),
id
=
np
.
concatenate
([
saved_state
[
'
id
'
],
nested_sampler
.
saved_id
[
1
:]]),
it
=
np
.
concatenate
([
saved_state
[
'
it
'
],
nested_sampler
.
saved_it
[
1
:]]),
nc
=
np
.
concatenate
([
saved_state
[
'
nc
'
],
nested_sampler
.
saved_nc
[
1
:]]),
boundidx
=
np
.
concatenate
([
saved_state
[
'
boundidx
'
],
nested_sampler
.
saved_boundidx
[
1
:]]),
bounditer
=
np
.
concatenate
([
saved_state
[
'
bounditer
'
],
nested_sampler
.
saved_bounditer
[
1
:]]),
scale
=
np
.
concatenate
([
saved_state
[
'
scale
'
],
nested_sampler
.
saved_scale
[
1
:]]),
)
else
:
current_state
=
dict
(
unit_cube_samples
=
nested_sampler
.
saved_u
,
physical_samples
=
nested_sampler
.
saved_v
,
sample_likelihoods
=
nested_sampler
.
saved_logl
,
sample_log_volume
=
nested_sampler
.
saved_logvol
,
sample_log_weights
=
nested_sampler
.
saved_logwt
,
cumulative_log_evidence
=
nested_sampler
.
saved_logz
,
cumulative_log_evidence_error
=
nested_sampler
.
saved_logzvar
,
cumulative_information
=
nested_sampler
.
saved_h
,
id
=
nested_sampler
.
saved_id
,
it
=
nested_sampler
.
saved_it
,
nc
=
nested_sampler
.
saved_nc
,
boundidx
=
nested_sampler
.
saved_boundidx
,
bounditer
=
nested_sampler
.
saved_bounditer
,
scale
=
nested_sampler
.
saved_scale
,
)
current_state
.
update
(
ncall
=
nested_sampler
.
ncall
,
live_logl
=
nested_sampler
.
live_logl
,
iteration
=
nested_sampler
.
it
-
1
,
live_u
=
nested_sampler
.
live_u
,
live_v
=
nested_sampler
.
live_v
,
nlive
=
nested_sampler
.
nlive
,
live_bound
=
nested_sampler
.
live_bound
,
live_it
=
nested_sampler
.
live_it
,
added_live
=
nested_sampler
.
added_live
)
deepdish
.
io
.
save
(
resume_file
,
current_state
)
nested_sampler
.
saved_id
=
[
nested_sampler
.
saved_id
[
-
1
]]
nested_sampler
.
saved_u
=
[
nested_sampler
.
saved_u
[
-
1
]]
nested_sampler
.
saved_v
=
[
nested_sampler
.
saved_v
[
-
1
]]
nested_sampler
.
saved_logl
=
[
nested_sampler
.
saved_logl
[
-
1
]]
nested_sampler
.
saved_logvol
=
[
nested_sampler
.
saved_logvol
[
-
1
]]
nested_sampler
.
saved_logwt
=
[
nested_sampler
.
saved_logwt
[
-
1
]]
nested_sampler
.
saved_logz
=
[
nested_sampler
.
saved_logz
[
-
1
]]
nested_sampler
.
saved_logzvar
=
[
nested_sampler
.
saved_logzvar
[
-
1
]]
nested_sampler
.
saved_h
=
[
nested_sampler
.
saved_h
[
-
1
]]
nested_sampler
.
saved_nc
=
[
nested_sampler
.
saved_nc
[
-
1
]]
nested_sampler
.
saved_boundidx
=
[
nested_sampler
.
saved_boundidx
[
-
1
]]
nested_sampler
.
saved_it
=
[
nested_sampler
.
saved_it
[
-
1
]]
nested_sampler
.
saved_bounditer
=
[
nested_sampler
.
saved_bounditer
[
-
1
]]
nested_sampler
.
saved_scale
=
[
nested_sampler
.
saved_scale
[
-
1
]]
def
generate_trace_plots
(
self
,
dynesty_results
):
filename
=
'
{}/{}_trace.png
'
.
format
(
self
.
outdir
,
self
.
label
)
logging
.
debug
(
"
Writing trace plot to {}
"
.
format
(
filename
))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment