Skip to content
Snippets Groups Projects
Commit b96ff686 authored by Colm Talbot's avatar Colm Talbot
Browse files

Merge branch 'add-likelihood-evaluations' into 'master'

Add likelihood evaluations to the posterior data frame

Closes #105

See merge request Monash/tupak!68
parents b331d8a5 80dc58fe
No related branches found
No related tags found
1 merge request!68Add likelihood evaluations to the posterior data frame
Pipeline #
......@@ -273,6 +273,7 @@ class Result(dict):
"""
data_frame = pd.DataFrame(
self.samples, columns=self.search_parameter_keys)
data_frame['log_likelihood'] = getattr(self, 'log_likelihood_evaluations', np.nan)
if conversion_function is not None:
data_frame = conversion_function(data_frame, likelihood, priors)
self.posterior = data_frame
......
......@@ -400,6 +400,7 @@ class Nestle(Sampler):
self.result.sampler_output = out
self.result.samples = nestle.resample_equal(out.samples, out.weights)
self.result.log_likelihood_evaluations = out.logl
self.result.log_evidence = out.logz
self.result.log_evidence_err = out.logzerr
return self.result
......@@ -503,6 +504,7 @@ class Dynesty(Sampler):
weights = np.exp(out['logwt'] - out['logz'][-1])
self.result.samples = dynesty.utils.resample_equal(
out.samples, weights)
self.result.log_likelihood_evaluations = out.logl
self.result.log_evidence = out.logz[-1]
self.result.log_evidence_err = out.logzerr[-1]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment