Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
ca038291
Commit
ca038291
authored
6 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Patches
Plain Diff
Remove waveform generator dep. example
parent
fba3f446
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/other_examples/linear_regression_with_waveform_generator.py
+0
-115
0 additions, 115 deletions
...her_examples/linear_regression_with_waveform_generator.py
with
0 additions
and
115 deletions
examples/other_examples/linear_regression_with_waveform_generator.py
deleted
100644 → 0
+
0
−
115
View file @
fba3f446
#!/bin/python
"""
An example of how to use tupak to perform paramater estimation for
non-gravitational wave data. In this case, fitting a linear function to
data with background Gaussian noise. This example illustrates how the
waveform_generator could be used.
"""
from
__future__
import
division
import
tupak
import
numpy
as
np
import
matplotlib.pyplot
as
plt
# A few simple setup steps
tupak
.
utils
.
setup_logger
()
label
=
'
linear-regression
'
outdir
=
'
outdir
'
# Here is minimum requirement for a Likelihood class to run linear regression
# with tupak. In this case, we setup a GaussianLikelihood, which needs to have
# a log_likelihood method. Note, in this case we make use of the `tupak`
# waveform_generator to make the signal (more on this later) But, one could
# make this work without the waveform generator.
# Making simulated data
# First, we define our signal model, in this case a simple linear function
def
model
(
time
,
m
,
c
):
return
time
*
m
+
c
# New we define the injection parameters which we make simulated data with
injection_parameters
=
dict
(
m
=
0.5
,
c
=
0.2
)
# For this example, we'll use standard Gaussian noise
sigma
=
1
# These lines of code generate the fake data. Note the ** just unpacks the
# contents of the injection_paramsters when calling the model function.
sampling_frequency
=
10
time_duration
=
10
time
=
np
.
arange
(
0
,
time_duration
,
1
/
sampling_frequency
)
N
=
len
(
time
)
data
=
model
(
time
,
**
injection_parameters
)
+
np
.
random
.
normal
(
0
,
sigma
,
N
)
# We quickly plot the data to check it looks sensible
fig
,
ax
=
plt
.
subplots
()
ax
.
plot
(
time
,
data
,
'
o
'
,
label
=
'
data
'
)
ax
.
plot
(
time
,
model
(
time
,
**
injection_parameters
),
'
--r
'
,
label
=
'
signal
'
)
ax
.
set_xlabel
(
'
time
'
)
ax
.
set_ylabel
(
'
y
'
)
ax
.
legend
()
fig
.
savefig
(
'
{}/{}_data.png
'
.
format
(
outdir
,
label
))
# Parameter estimation: we now define a Gaussian Likelihood class relevant for
# our model.
class
GaussianLikelihood
(
tupak
.
Likelihood
):
def
__init__
(
self
,
x
,
y
,
sigma
,
waveform_generator
):
"""
Parameters
----------
x, y: array_like
The data to analyse
sigma: float
The standard deviation of the noise
waveform_generator: `tupak.waveform_generator.WaveformGenerator`
An object which can generate the
'
waveform
'
, which in this case is
any arbitrary function
"""
self
.
x
=
x
self
.
y
=
y
self
.
sigma
=
sigma
self
.
N
=
len
(
x
)
self
.
waveform_generator
=
waveform_generator
self
.
parameters
=
waveform_generator
.
parameters
def
log_likelihood
(
self
):
res
=
self
.
y
-
self
.
waveform_generator
.
time_domain_strain
()
return
-
0.5
*
(
np
.
sum
((
res
/
self
.
sigma
)
**
2
)
+
self
.
N
*
np
.
log
(
2
*
np
.
pi
*
self
.
sigma
**
2
))
def
noise_log_likelihood
(
self
):
return
-
0.5
*
(
np
.
sum
((
self
.
y
/
self
.
sigma
)
**
2
)
+
self
.
N
*
np
.
log
(
2
*
np
.
pi
*
self
.
sigma
**
2
))
# Here, we make a `tupak` waveform_generator. In this case, of course, the
# name doesn't make so much sense. But essentially this is an objects that
# can generate a signal. We give it information on how to make the time series
# and the model() we wrote earlier.
waveform_generator
=
tupak
.
WaveformGenerator
(
time_duration
=
time_duration
,
sampling_frequency
=
sampling_frequency
,
time_domain_source_model
=
model
)
# Now lets instantiate a version of out GravitationalWaveTransient, giving it
# the time, data and waveform_generator
likelihood
=
GaussianLikelihood
(
time
,
data
,
sigma
,
waveform_generator
)
# From hereon, the syntax is exactly equivalent to other tupak examples
# We make a prior
priors
=
{}
priors
[
'
m
'
]
=
tupak
.
prior
.
Uniform
(
0
,
5
,
'
m
'
)
priors
[
'
c
'
]
=
tupak
.
prior
.
Uniform
(
-
2
,
2
,
'
c
'
)
# And run sampler
result
=
tupak
.
run_sampler
(
likelihood
=
likelihood
,
priors
=
priors
,
sampler
=
'
dynesty
'
,
npoints
=
500
,
walks
=
10
,
injection_parameters
=
injection_parameters
,
outdir
=
outdir
,
label
=
label
,
plot
=
True
)
print
(
result
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment