Skip to content
Snippets Groups Projects
Commit cb1b11af authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Update example to work with changes in the HierarchicalLikelihood

parent 0fa784e5
No related branches found
No related tags found
1 merge request!41Add hyper-parameter likelihood
......@@ -69,38 +69,15 @@ for i in range(Nevents):
samples.append(result.samples)
# Now run the hyperparameter inference
def run_prior(val):
if np.all(val > -10) & np.all(val < 10):
return 1/20.
else:
return 0
def hyper_prior(val, mu_m, sigma_m):
return np.exp(-(mu_m - val)**2 / 2 / sigma_m**2) / np.sqrt(2*np.pi*sigma_m**2)
def log_run_prior(val):
if np.all(val > -10) & np.all(val < 10):
return len(val) * - np.log(20)
else:
return 0
def log_hyper_prior(val, mu_m, sigma_m):
res = val - mu_m
return -0.5 * (np.sum((res / sigma_m)**2)
+ len(val)*np.log(2*np.pi*sigma_m**2))
run_prior = tupak.prior.Uniform(minimum=-10, maximum=10, name='mu_m')
hyper_prior = tupak.prior.Gaussian(mu=0, sigma=1, name='hyper')
hp_likelihood = tupak.likelihood.HyperparameterLikelihood(
samples, log_hyper_prior, log_run_prior, mu_m=None, sigma_m=None)
samples, hyper_prior, run_prior, mu=None, sigma=None)
hp_priors = dict(
mu_m=tupak.prior.Uniform(-10, 10, 'mu_m', '$\mu_m$'),
sigma_m=tupak.prior.Uniform(0, 10, 'sigma_m', '$\sigma_m$'))
mu=tupak.prior.Uniform(-10, 10, 'mu', '$\mu_m$'),
sigma=tupak.prior.Uniform(0, 10, 'sigma', '$\sigma_m$'))
# And run sampler
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment