Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
bilby
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
lscsoft
bilby
Commits
e0a0e0a9
Commit
e0a0e0a9
authored
5 years ago
by
Gregory Ashton
Browse files
Options
Downloads
Plain Diff
Merge branch 'fix-combined-bayes-factors' into 'master'
Fix combine runs See merge request
lscsoft/bilby!566
parents
b311146d
9021c207
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!566
Fix combine runs
Pipeline
#72304
passed with warnings
5 years ago
Stage: test
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bilby/core/result.py
+27
-7
27 additions, 7 deletions
bilby/core/result.py
with
27 additions
and
7 deletions
bilby/core/result.py
+
27
−
7
View file @
e0a0e0a9
...
...
@@ -1363,21 +1363,41 @@ class ResultList(list):
return
result
def
_combine_nested_sampled_runs
(
self
,
result
):
"""
Combine multiple nested sampling runs.
Currently this keeps posterior samples from each run in proportion with
the evidence for each individual run
Parameters
----------
result: bilby.core.result.Result
The result object to put the new samples in.
Returns
-------
posteriors: list
A list of pandas DataFrames containing the reduced sample set from
each run.
result: bilby.core.result.Result
The result object with the combined evidences.
"""
self
.
check_nested_samples
()
log_evidences
=
np
.
array
([
res
.
log_evidence
for
res
in
self
])
result
.
log_evidence
=
logsumexp
(
log_evidences
,
b
=
1.
/
len
(
self
))
if
result
.
use_ratio
:
result
.
log_bayes_factor
=
result
.
log_evidence
result
.
log_evidence
=
result
.
log_evidence
+
result
.
log_noise_evidence
log_bayes_factors
=
np
.
array
([
res
.
log_bayes_factor
for
res
in
self
])
result
.
log_bayes_factor
=
logsumexp
(
log_bayes_factors
,
b
=
1.
/
len
(
self
))
result
.
log_evidence
=
result
.
log_bayes_factor
+
result
.
log_noise_evidence
result_weights
=
np
.
exp
(
log_bayes_factors
-
np
.
max
(
log_bayes_factors
))
else
:
result
.
log_bayes_factor
=
result
.
log_evidence
-
result
.
log_noise_evidence
log_evidences
=
np
.
array
([
res
.
log_evidence
for
res
in
self
])
result
.
log_evidence
=
logsumexp
(
log_evidences
,
b
=
1.
/
len
(
self
))
result_weights
=
np
.
exp
(
log_evidences
-
np
.
max
(
log_evidences
))
log_errs
=
[
res
.
log_evidence_err
for
res
in
self
if
np
.
isfinite
(
res
.
log_evidence_err
)]
if
len
(
log_errs
)
>
0
:
result
.
log_evidence_err
=
logsumexp
(
2
*
np
.
array
(
log_errs
),
b
=
1.
/
len
(
self
))
else
:
result
.
log_evidence_err
=
np
.
nan
result_weights
=
np
.
exp
(
log_evidences
-
np
.
max
(
log_evidences
))
posteriors
=
[]
posteriors
=
list
()
for
res
,
frac
in
zip
(
self
,
result_weights
):
selected_samples
=
(
np
.
random
.
uniform
(
size
=
len
(
res
.
posterior
))
<
frac
)
posteriors
.
append
(
res
.
posterior
[
selected_samples
])
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment